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 Purpose: To define the incidence of healthcare-associated ventriculitis and meningitis (HAVM) in the neuro-ICU

and to identify HAVM risk factors using tree-based machine learning (ML) algorithms.
Methods: An observational cohort study was conducted in Russia from 2010 to 2017, and included high-risk
neuro-ICU patients. We utilized relative risk analysis, regressions, and ML to identify factors associated with
HAVM development.
Results: 2286 patients of all ages were included, 216 of them had HAVM. The cumulative incidence of HAVMwas
9.45% [95% CI 8.25–10.65]. The incidence of EVD-associated HAVMwas 17.2 per 1000 EVD-days or 4.3% [95% CI
3.47–5.13] per 100 patients. Combining all three methods, we selected four important factors contributing to
HAVM development: EVD, craniotomy, superficial surgical site infections after neurosurgery, and CSF leakage.
The ML models performed better than regressions.
Conclusion:We first reported HAVM incidence in a neuro-ICU in Russia. We showed that tree-based ML is an ef-
fective approach to study risk factors because it enables the identification of nonlinear interaction across factors.
We suggest that the number of found risk factors and the duration of their presence in patients should be reduced
to prevent HAVM.

© 2018 Elsevier Inc. All rights reserved.
Keywords:
Meningitis
Bacterial
Risk factors
Cross infection
Machine learning
Intensive care unit
Infection control
1. Introduction

Healthcare-associated ventriculitis and meningitis (HAVM) may
take place in association with invasive neurosurgical procedures
(post-neurosurgical meningitis), penetrating head trauma (post-trau-
matic meningitis), or miscellaneous causes on occasion [1]. HAVM sig-
nificantly impairs patient outcomes, enhancing morbidity and
mortality [2]. The development of post-neurosurgical meningitis can
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increase mortality rate approximately 3 times (13.7% vs. 4.7%) com-
pared to non-meningitis neurosurgical patients [3]. Moreover, HAVM
increases the cost of care. In 2014, Schweizer et al. [4] showed in a
large study (N50,000 analyzed operations) a 1.93-fold increase
($23,755 more per case) of attributable health care expenditures to pa-
tients with post-neurosurgical meningitis compared to those without
infections after neurosurgery. For effectiveHAVMprevention it is neces-
sary to have reliable data regardingHAVM incidence in different patient
cohorts, and learn associated risk factors.

We assigned three primary objectives to this study: (1) to determine
the incidence of HAVM in the high-risk population, i.e. patients who
stayed in the neuro-ICU for N48 h, (2) to compare HAVM incidence in
patients who were exposed to different risk factors during their stay
in the ICU and assess relative risk (RR) for each of the factors, and (3)
to identify and range HAVM risk factors using regression and machine
learning (ML) approaches. We hypothesized that during patients' stay
in the ICU a few independent factors would emerge over time, increas-
ing the probability of HAVM development.

The first objective includes the study of HAVM incidence that is usu-
ally analyzed depending on risk factors or diagnosis. In the literature,
the cumulative incidence of post-neurosurgical meningitis varies
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dramatically. While one study demonstrated 0.3% HAVM incidence in
1587 neurosurgical cases [5], another study found 8.6% incidence in
755 pediatric patients after neurosurgery [6]. The incidence of post-
traumatic meningitis also varies and depends on trauma features. One
study recently reported this rate as 3.1% for all types of brain trauma
[7]. Nationwide statistics for HAVM cases in Russia are not publicly
available. According to a 2016 state report, 24771 cases of healthcare-
associated infections (HAIs) were registered throughout Russia (includ-
ing 5623 cases of surgical site infections) without distinguishing which
were HAVM [8]. The goal of our study is to fill this gap.

Studying of HAVM incidence is particularly relevant for high-risk ICU
patients because the admission to the ICU independently increases the
risk of HAIs, according to a 2002 report of the U.S. Centers for Disease
Control (CDC) [9]. Approximately 25% of all nosocomial infections in
the U.S. occurred among adults and children in ICUs [9] despite the
fact that ICU beds account for just 8.5% of all hospital beds [10].

The second and third objectives include HAVM risk factors analysis.
To date, several different factors have been suggested as possibly in-
creasing the incidence of HAVM. While some of them are well-
established, other factors are less certain, and many detected associa-
tions are controversial and are not well-supported by data. The craniot-
omy has been considered to be themain risk factor of HAVM since 1977
[11]. Additionally, invasive devices, e.g. external ventricular drains
(EVD), shunts, external lumbar catheters have been shown to increase
the rate of HAVM inmultiple studies [1,12-14]. The role of other risk fac-
tors, including bedside ICPM, reoperation, the duration of neurosurgery,
tracheal intubation, central line, and infectious complications of other
localizations remains controversial [1,3,5,6].

Typically, researchers use statistical regression models to select dis-
ease risk factors [3,6,12,15,16]. However, it has been argued that regres-
sionmodels are not an optimal approach for such a complex problem as
HAIs, where nonlinearity can be broadly presented [17]. In addition, lin-
earmodels havemany disadvantages, including sensitivity to data noise
and multicollinearity, that can yield misleading conclusions [18]. Thus,
the methods used to assess risk factors need to be improved in order
to increase reliability and accuracy of the results and prevent HAVM
as a final goal.

If we generalize the task of risk factor identification, we come to the
well-known data science problem of feature importance ranking [19], a
problem that is effectively solved by usingML [19]. We selected the de-
cision tree-based ML algorithms for the study purpose because they are
highly effective in feature selection and in dealing with nonlinearity.
Specifically, we applied Random Forest (RF) classifier and Extreme Gra-
dient Boosting classifier (XGBoost) to our data set. XGBoost is one of the
most successful ML techniques, because it is computationally efficient,
scalable, and prevents over-fitting. For instance, feature ranking was
successfully performed by using XGBoost in e-commerce, facilitating a
reduction in the number of features four times without performance
quality loss [20]; the general taskwas very similar to ours. Inmedical re-
search, XGBoost is getting more popular for solving binary classifica-
tions combined with feature selection [18,22,23]. For example, this
approach identified atypical language fMRI patterns in patients with ep-
ilepsy and accurately (ROC-AUC= 0.91) distinguished between people
with and without disease [21]. The ML algorithms have several advan-
tages over regressionmodels. Particularly important advantages offered
by ML include robustness to highly correlated features and noise and
the ability to retrieve nonlinear interactions across features and deal
with imbalanced data. Moreover, no normalization is needed and fine-
tuningparameters can reduce the impact of class imbalance in a training
set without rebalancing data.

For the abovementioned reasons, the usage ofML algorithms for the
selection of disease-associated risk factors is likely to grow in the future.
To the best of our knowledge, no studies using tree-basedML to identify
HAVM risk factors have been performed. Herein we proposed XGBoost-
based ML algorithm for HAVM risk factors learning in comparison with
regression models and RR analysis.
2. Materials and methods

2.1. Study setting and design

This study is a prospective observational single-center cohort study
performed in the neuro-ICU at Burdenko Neurosurgery Institute (NSI)
in Moscow, Russia. The NSI ICU has 38 single-bed rooms for patients
with neurosurgical diseases and cares for approximately 3000 patients
per year. In 2010, the program of infection prevention and control was
implemented in the ICU. The study analyzed the data collected within
this program. We compared two groups of patients, with and without
HAVM. Both groups were selected from the high-risk patients' popula-
tion (see next section).

2.2. Patients and diagnoses

The study lasted for 80months, from October 1st, 2010 to June 30th,
2017. Only patients who stayed in the ICU for N48 h were eligible. We
considered these patients to be a high-risk population and accordingly
limited the study to this group only. The exclusion criteria included in-
fections presenting on admission (according to the CDC/NHSN defini-
tion [24]) and the duration of ICU stay longer than 1000 days. All
qualified patients regardless their age, conditions, disease, etc., were en-
rolled and participated in the study until discharge or death. Partici-
pants were enrolled starting their third to sixth day in the ICU.

HAVMwas defined clinically based on the presence of at least three
out of eight criteria: (1) CSF glucose level below 2.2 mmol/l or below
50% of plasma glucose in hyperglycemic patients, (2) CSF neutrophils
count above 50/μl, (3) CSF protein above 220 mg/dl, (4) CSF lactate
above 4.0 mmol/l, (5) positive CSF culture, (6) visualization of bacteria
in CSF by Gram staining, (7) SIRS syndrome, (8) negative neurological
dynamics. Infection was defined as healthcare-associated if it met the
CDC criteria [24]. The case of HAVM was considered to be a factor-re-
lated if the patient had the factor (e.g. EVD, ICPM, etc.) for N48 h prior
to the development of HAVM, otherwise it was deemed factor-unre-
lated. At the end of study, we revised HAVM cases for compliance
with diagnostic criteria and confirmed them retrospectively.

Due to the open nature of the study, patients were enrolled and then
left the study at different points in time. The therapeutic approach and
the ICU team remained constant throughout the study. In the follow-
up period (after the patient's discharge from the ICU and until the dis-
charge from the hospital) the information regarding the total length of
stay and the outcome was collected.

2.3. Data collection and preprocessing

Weprospectively collected 54 parameters for each patient, including
demographics, exposure to risk factors, infections, etc. (Table 1 Supple-
mentary). The Charlson Comorbidity Index (CCI) value [25] on admis-
sion was used to assess the severity of pre-existing conditions. The
data were anonymized and stored electronically as a part of NSI's health
record system.

For data preprocessing we first inspected data for missing or out-of-
range values. We found some occasional missing values and filled them
in after retrieving the information from the health record system. If
there was no information available in the system, the group mean was
substituted for themissing value. Thenwe expanded the number of var-
iables by generating 175 new clinically relevant aggregation features,
and composed a new analytical dataset (available at https://doi.org/
10.5281/zenodo.1021503).

2.4. Statistical analysis

Statistical analysis was performed in Python 3.6 using StatsModels
[26], SciPy Scientific Tools [27], and scikit-learn [28]. Qualitative vari-
ables for dichotomous events are reported as number of events of one
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category with percentage and 95% confidence interval (CI) for binomial
distribution. Quantitative variables are reported as median with first
and third quartiles (Q1;Q3). Cumulative HAVM incidence is presented
as the number of HAVM cases per 100 high-risk patients (shown as
%). The incidence rate is presented as a number of cases per 1000 pa-
tient-days. EVD-associated HAVM incidence was measured using a
risk-adjusted, time-dependent denominator: number of cases per
1000 device-days (days at risk). For continuous variables we used a
nonparametric statistics (Mann-Whitney test) to test the difference be-
tween HAVM and non-HAVM groups. Chi-squared tests were used to
compare binary and categorical variables. All statistical tests were
two-tailed. Bonferroni-Holm method was used to correct for multiple
comparisons where appropriate. The level of significance (p-value)
was defined as below 0.01.

In order to estimate the influence of risk factor to the development of
HAVM, we stratified patients by the exposure to different risk factors
and calculated RR.

Linear models for risk factors selection included principal compo-
nent analysis (PCA) and multivariate logistic regression. The goal of
PCA was to reduce dimensionality into 3-dimensional space and check
the possibility of data clusterization. Logistic regression was performed
with L1 regularization on the normalized dataset in 10-fold cross-vali-
dation using StratifiedKfold algorithm [29]. First, the dataset was
checked for multicollinearity and correlated features were removed.
We set up the variance inflation factor as a metric to evaluate
multicollinearitywith threshold=2.5. The set of not correlated features
was entered into the model; odds ratio and 95% CI were calculated for
each feature.

2.5. Machine learning for risk factors identification

Machine learning was performed in Python 3.6 using scikit-learn
[28]. Categorical variables were converted into dummy/indicator vari-
ables. To identify factors associated with HAVM we proposed a two-
step algorithm. In the first step, themodels were trained to solve binary
classification problem for imbalanced classes. In the second step, the
model with the best overall performance was used to rank factors by
their importance in predicting HAVM.

For the first stepwe selected four decision tree models: XGBoost with
default parameters (XGBoost [30]), XGBoost with scale_pos_weight = 4
(weighted XGBoost), RF with default parameters, and RF with
class_weight=1:4 (weighted RF).Weighted classifiers allowed us to im-
prove performance without using any synthetic data while balancing
Type I and Type II errors. Training models were done attempting to max-
imize “binary:log-loss” objective function (negative log-loss). Since log-
loss doesn't discriminate between Type I and Type II errors, we selected
four additional metrics to evaluate classification performance: the area
under the receiver-operating characteristic curve (ROC-AUC), precision,
recall, and F1 score. Stratified Kfold cross-validation algorithm with k =
10wasused topreventmodels fromoverfitting [29]. Performancemetrics
values were calculated as an average of ten cross-validations. The
scale_pos_weight value was selected using grid search to achieve at
least 25% recall and maximum precision (Fig. 4B Supplementary).

The second and main step of our algorithm is feature selection and
ranking. There are several suggested approaches, which can include
greedy randomized algorithms, forward selection, and backward elimi-
nation [19,31]. XGBoost has a built-in function to estimate feature im-
portance by measuring F-score. We applied this method to each
training model because it is validated and computationally effective.
However, it does not allow for sufficient reduction in the number of fea-
tures to reliably compare among them. To increase the accuracy of rank-
ing, we introduced a scoring functionwhich is based on forward feature
selection and Top-1 feature rating. Specifically, at each iteration k of the
cross-validation, the feature with the highest F-score was picked and
one point was assigned to it. Then for each feature we summed up the
points to create the ranked list.
2.6. Summary of risk factor identification methods

In total, we applied five techniques to select HAVM risk factors. Four
of them (including univariate analysis, multivariate logistic regression,
built-in XGBoost F-estimator, and our scoring function) take into ac-
count only features that evolved before HAVM occurred, i.e. they esti-
mate the probability to develop HAVM in patients with given set of
risk factors (or only one factor). Generally speaking, they can be consid-
ered predictive algorithms. However, we did not aim to develop the
clinical prognostic or early diagnostic model for HAVM, instead using
them solely for feature evaluation purposes. The fifth technique, RR
analysis, works basically post-factum (after HAVM has occurred), and
can suffer from confounding variables. Therefore, we hypothesized
that the combination of all five methods should yield the optimal and
comprehensive result.

Each technique produced a set of important features that then were
overlapped. Next, we grouped these features in a clinically appropriate
way, counted the number of hits for all features in the group, and then
ranked groups by the total number of hits.

2.7. Ethics statement

The NSI Review Board approved the study and granted a consent
waiver status. Informed consent from the patient was not required in
this case due to non-interventional nature of the study. Also, the study
met the criteria 45 CFR 46.117(c) [32] and its Russian analog [33,chapter
4.8.14], indicating that the research presents nomore thanminimal risk
of harm to subjects and does not involve any additional interventions
besides those in the regular therapeutic regimen. Characteristics that
could potentially identify patients were removed immediately and per-
manently after the data had been collected to protect the privacy of the
patients. The patients and their relatives were provided with the infor-
mation about the study when asked. Patients did not receive financial
compensation.

3. Results

The python code for all steps of data analysis, such as data prepro-
cessing, statistical analysis and ML is available at https://github.com/
KseniaErshova/HAVM_paper.git.

3.1. Characteristics of the study population

During 80months of the studywe enrolled 2324 patients. According
to the exclusion criteria, 38 patients were removed from the data anal-
ysis, leaving 2286 patients in the final dataset (available at https://doi.
org/10.5281/zenodo.1021503). Some patients were readmitted to the
ICU within one hospitalization, we collected 2519 events of ICU admis-
sion from 2286 unique patients with 2087 patients having been admit-
ted once, 168 patients - twice, 30 patients - 3 times, and one patient had
6 events of ICU admission.

A total of 2286 patients included 393 children under 18 years of age
(17.2%) and 1139 males (49.8%). Comparing HAVM and non-HAVM
groups we found that patients were similar in age, gender, disease
type and CCI. A detailed description of two groups is presented in
Table 1A. HAVM contributed to more severe overall patients' condition
by prolonging the stay in the ICU (42.70 ± 40.98 days [95% CI 36.04;
46.99] vs. 17.82 ± 35.05 days [95% CI 16.31–19.33], p-value b 0.001),
and increasing all-cause mortality rate (29.2% [95% CI 23.11–35.23] vs.
13% [95% CI 11.59–14.49], p-value b 0.001), Table 1B.

We diagnosed 216 patients with HAVM, 33 (15.3%) of them being
pediatric patients. Two patients had two cases of HAVMduring onehos-
pitalization. The median duration of meningitis was 19 days [Q1;Q3:
8;51] with a maximum at 279 days; 38 patients developed HAVM be-
fore ICU admission or at the first day in the ICU. For the rest 178 patients
the median time between ICU admission and the onset of HAVM was
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Table 1
Baseline demographic characteristics (1A) and outcomes (1B) in two groups of patients (with HAVM and without HAVM) included in the study. p-Value obtained from Chi-squared or
Mann-Whitney test, and corrected to multiple comparisons by using Bonferroni-Holm method. Abbreviations: CI - confidence interval, HAVM - healthcare-associated ventriculitis/men-
ingitis, Q1;Q3 - first and third quartiles.

1A. Demographic characteristics and diagnosis on admission

Characteristics All (n = 2286) HAVM (n = 216) non-HAVM (n = 2070) p-Value Adjusted
p-value

Number of patients
(%)

Number of patients
(%)

95% CI Number of patients
(%)

95% CI

Gender, male 1139 (49.83%) 114 (52.8%) [46.12–59.44] 1025 (49.5%) [47.36–51.67] 0.40 1.00
Children under 18 years of
age

393 (17.19%) 33 (15.28%) [10.48–20.08] 360 (17.4%) [15.76
–19.02]

0.49 1.00

Diagnosis on
admission

Brain tumors 1414 (61.85%) 150 (69.4%) [63.30–75.59] 1264 (61.1%) [58.96–63.16] 0.02 0.29
Vascular brain diseases 519 (22.7%) 32 (14.8%) [10.08–19.55] 487 (23.5%) [21.70–25.35] 0.00 0.08
Brain trauma 284 (12.42%) 30 (13.9%) [9.28–18.50] 254 (12.3%) [10.86–13.68] 0.56 1.00
Other diseases 35 (1.53%) 3 (1.4%) [−0.17–2.95] 32 (1.5%) [1.01–2.08] 0.91 1.00
Congenital disorders 28 (1.22%) 1 (0.5%) [−0.04–0.136] 27 (1.3%) [0.82–1.79] 0.46 1.00
Spinal disorders 4 (0.17%) 0 (0.0%) [0.00–0.00] 4 (0.2%) [0.00–0.38] 0.83 1.00

Mean ± Std Mean ± Std Median [Q1;
Q3]

Mean ± Std Median [Q1;
Q3]

p-Value Adjusted
p-value

Age 41.9 ± 21.3 41.5 ± 21.0 46
[24.0;56.75]

42.0 ± 21.4 46 [26.0;59.0] 0.28 1.00

Charlson Comorbidity
Index

3.6 ± 2.0 3.7 ± 2.0 3 [2.0;5.0] 3.6 ± 2.0 3 [2.0;5.0] 0.40 1.00

1B. Patients outcomes and types of surgeries which patients underwent throughout the time in the ICU

Characteristics All (n = 2286) HAVM (n = 216) non-HAVM (n = 2070) p-Value Adjusted
p-value

Number of patients
(%)

Number of patients
(%)

95% CI Number of patients
(%)

95% CI

Surgery Craniotomy 1717 (75.11%) 171 (79.2%) [73.75–84.58] 1546 (74.7%) [72.81– 76.56] 0.1718 1.0000
Device implantation 704 (30.8%) 144 (66.7%) [60.38– 72.95] 560 (27.1%) [25.14– 28.97] 0.0000 0.0000
Endonasal transsphenoidal
surgery

99 (4.33%) 23 (10.6%) [6.53– 14.76] 76 (3.7%) [2.86–4.48] 0.0000 0.0001

Endovascular surgery 227 (9.93%) 22 (10.2%) [6.15–14.22] 205 (9.9%) [8.62–11.19] 0.9902 1.0000
Other surgeries 968 (42.34%) 152 (70.4%) [64.28–76.46] 816 (39.4%) [37.32–41.53] 0.0000 0.0000
No surgery 117 (5.12%) 2 (0.9%) [−0.35–2.20] 115 (5.6%) [4.57–6.54] 0.0055 0.0881
Spinal surgery 51 (2.23%) 5 (2.3%) [0.31–4.32] 46 (2.2%) [1.59–2.86] 0.8773 1.0000

Outcome Death 333 (14.57%) 63 (29.2%) [23.11–35.23] 270 (13.0%) [11.59–14.49] 0.0000 0.0000
Negative dynamics 562 (24.58%) 61 (28.2%) [22.24–34.24] 501 (24.2%) [22.36–26.05] 0.2193 1.0000
No dynamics 243 (10.63%) 13 (6.0%) [2.85–9.19] 230 (11.1%) [9.76–12.46] 0.0282 0.3945
Positive dynamics 1045 (45.71%) 72 (33.3%) [27.05–39.62] 973 (47.0%) [44.85–49.15] 0.0002 0.0030
Recovery 98 (4.29%) 7 (3.2%) [0.88–5.60] 91 (4.4%) [3.51–5.28] 0.5345 1.0000

Mean ± Std Mean ± Std Median [Q1;
Q3]

Mean ± Std Median [Q1;
Q3]

p-Value Adjusted
p-value

Total number of days in the ICU 20.06 ± 36.30 42.70 ± 40.98 30 [17.0; 50.5] 17.82 ± 35.05 9 [5.0; 20.0] 0.0000 0.0000
Total number of days in the hospital 39.66 ± 45.52 74.89 ± 72.94 53 [33.0; 87.5] 36.03 ± 40.41 25 [16.0; 41.0] 0.0000 0.0000
Number of ICU admission events 1.10 ± 0.36 1.24 ± 0.63 1 [1.0; 1.0] 1.08 ± 0.31 1 [1.0; 1.0] 1.0000 1.0000
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9 days [Q1;Q3: 5;15]. Approximately one-third of patients with HAVM
developed the disease between the second and seventh day in the ICU
(61 patients, 28.2% [95% CI 22.2–34.2]).
3.2. Incidence and relative risk of HAVM for different risk factors

The cumulative incidence of HAVM was 9.45% [95% CI 8.25–10.65],
or 4.71 cases per 1000 high-risk patient days in the ICU.

The case of HAVM can be either factor-related or factor-unrelated
(see Materials and methods section). We proposed a set of factors,
which are likely to increase HAVM incidence in the high-risk patients
(candidate factors, listed along x-axis of Fig. 1A). We then calculated
incidence and RR of factor-associated HAVM for each individual fac-
tor and also for combined factors (Fig. 1A). The highest incidence
was found in patients with SSSI (20.2% [95% CI 12.1–28.3], RR =
2.55, p-value b 0.001) as compared to those without SSSI. Other sig-
nificant factors included CSF leak from surgical site (CSFL-SS) (17.5%
[95% CI 9.96–25.1], RR = 2.18, p-value b 0.001), and implantation of
neurosurgical devices (INSD) (17.3% [95% CI 14.5–20.1], RR = 3.81,
p-value b 0.001). In patients who underwent endoscopic endonasal
transsphenoidal surgery (EETS) there was a tendency towards
higher incidence rate (17.17% [95% CI 9.74–24.6] vs. 8.82% [95% CI
7.63–10.01], p-value = 0.02).

Additionally, we report the distribution of patients with andwithout
HAVMdepending on the presence of EVD (Fig. 1B). During the study pe-
riod EVDwas placed in 684 patients, and 99 of them developed EVD-as-
sociated HAVM; HAVM incidence in patients with EVDwas 14.47% [95%
CI 11.8–17.1]. HAVM incidence in patients without EVD was 3.7% [95%
CI 2.8–4.6], p-value b 0.001, RR = 3.93. The combination of EVD and
SSSI is also reported by patients distribution (Fig. 1D) to emphasize its
ability to increase HAVM RR as compared to each factor alone (9.4 vs.
3.93 and 2.55 respectively), Fig. 1A&D.

We also stratified patients by risk and assessed the incidence of fac-
tor-associated HAVMs using risk-adjusted time-dependent denomina-
tors. A total of 2286 patients accounted for 5770 EVD-days and 2494
ICPM-days at risk, and stayed in the ICU for 45,862 days in total. The
rate of EVD-associated HAVM was 2.16 cases per 1000 patient-days or
17.16 cases per 1000 EVD-days. For ICPM there were 0.92 cases per
1000 patients-days or 16.84 per 1000 device-days respectively (Fig.
1C). The infection rate in patients without EVD was 1.29 cases per
1000 patient-days, and without ICPM 3.7 cases per 1000 patient-days.
The cumulative incidence of EVD-associated HAVM was 4.3% [95% CI
3.47–5.13] per 100 high-risk patients.
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D External Ventricular Drainage AND SSSI as a Combined Risk Factor of HAVM
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Fig. 1.HAVM incidence in patients exposed to different risk factors in the neuro-ICU. A: cumulative incidence of HAVM, % (cases per 100 high-risk patients) in exposed vs. not exposed patients,
errorbars represent 95% confidence interval for binomial distribution; red dashed line represents overall HAVMcumulative incidence; star (*)marks p-value b0.01. B: the distribution of patients
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3.3. Univariate analysis of factors associated with HAVM

We explored factors that can increase the probability of HAVM, by
analyzing data only from those patients who had been monitored for
at least one day prior to being diagnosedwith HAVM. Thus, 178 patients
in HAVM group left in analysis. In some cases, HAVM had been
diagnosed 1–2 days later than the actual infection's occurrence, the fac-
tors associated with ongoing CNS infection (such as fever, altered con-
scious level, etc.) were excluded from analysis. The probability density
functions for selected continuous variables were different between
HAVM and non-HAVM groups, highlighting specific group patterns
(Fig. 1A Supplementary).
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Here and below we analyzed only factors, reflecting the time before
HAVM to evaluate their influence on the probability of HAVM. We per-
formed univariate analysis of 74 variables (Table 2 Supplementary). The
distribution of 74 crude p-values showed anti-conservative pattern
with a high percentage of alternative hypotheses (Fig. 1D Supplemen-
tary), which confirmed the validity and reliability of the results [34].
From there, we identified nine factors associated with increased risk
of HAVM development (Table 2).

3.4. Linear models for risk factor identification

First, we applied PCA that showed the absence of linear separability
between HAVM and non-HAVM groups by using hyperplane (Fig. 1B
Supplementary). In addition, cumulative variance explained by PCA
showed that at least 60 features (out of 88) should remain to explain
95% of variance (Fig. 1C Supplementary).

The dataset was found to be highly correlated (Fig. 2 Supplemen-
tary), that affected the accuracy of feature importance coefficients
assessed by logistic regression (Fig. 3C Supplementary). We removed
correlated features, leaving 27 features (listed along y-axis on Fig. 2A)
in analysis. Two features were shown to increase the likelihood of
HAVM: EVD (OR = 1.18 [95% CI 1.06–1.33]) and SSSI (OR = 1.22 [95%
CI 1.07–1.38]), and one feature (central line (OR = 0.86 [95% CI 0.79–
0.95])) decreased such likelihood (Fig. 2A, Table 3 Supplementary).
The performance of logistic regression on the set of not correlated fea-
tures (n = 27) was low (Fig. 2B), with F1 score to be 0.04 (Fig. 2C, red
circle). However, F1 score was higher (0.28) on the full data set (Fig.
2C) and the overall performancewas better (Fig. 3A&B Supplementary).
Therefore, the dataset most likely lost important features during pre-
processing, that limits the use of logistic regression in risk factors
analysis.

3.5. Tree-based models for risk factor identification

We applied decision tree-based ML algorithms (XGBoost and RF) to
identify HAVM risk factors because they are immune to multicollinearity
by design and do not require normalization. However, we had to deal
with class imbalance problembecause the datasetwas found to be imbal-
anced with HAVM patients as a minor class. We tested several tech-
niques: oversampling (SMOTE) [35], undersampling and combinations
of evaluation metrics which take into account class imbalance (F1-
score). Oversamplingminor class using SMOTE led to a decrease in the ac-
curacy of classification, andwas not used in the study. The only technique
used for dealing with class imbalance was fine-tuned scale_pos_weight
parameter of the models.
Table 2
Univariate analysis of different factors for possible association with HAVM in high-risk patients
Table 2 Supplementary. Chi-squared testwas utilized for binary (dichotomous) variables, andM
Bonferroni-Holm method for multiple comparisons.

Risk Factor HAVM (n = 216)

Number of patients (%) 95%

External ventricular drain 97 (54.5%) [47.
Central line 154 (86.5%) [81.
CSF leakage from surgical site (CSFL-SS) 18 (10.1%) [5.6
CSF leakage from nose & ears (CSFL-NE) 29 (16.3%) [10.
Superficial surgical site infection after neurosurgery (SSSI) 19 (10.7%) [6.1
Implantation of neurosurgical device (INSD) 107 (60.1%) [52.
Other surgeries 115 (64.6%) [57.
Recraniotomy 44 (24.7%) [18.

Mean ± Std Med
Days with lung infiltration on the X-ray 6.94 ± 5.64 7 [2
Days with healthcare-associated respiratory infection 7.23 ± 6.18 7 [2
Count of craniotomies 1.41 ± 0.68 1 [1
Count of implantations of neurosurgical devices 1.92 ± 1.46 1 [1
Weighted XGBoost performed better than other ML models for ini-
tial binary classification conducted on the full dataset. Mean of quality
metrics over 10 cross-validations demonstrated ROC-AUC = 0.83, pre-
cision = 0.39, recall = 0.32, F1 = 0.34, positive predictive value =
0.34, negative predictive value = 0.94 (Fig. 3A&B). It also showed sus-
tainable results on different data subsets with minimal loss of perfor-
mance quality (Figs. 4, 5, 6 Supplementary). Due to above reasons
weighted XGBoost was set up for feature selection. We selected and
ranked 42 important factors by F-scoring (Fig. 3D and Fig. 8 Supplemen-
tary). Our conservative scoring function identified two important fac-
tors over 10 cross-validations including “days with EVD” and “total
length of all craniotomies” (Fig. 3E).

When we intersected important factors from five methods (see
Materials and methods section), only eight factors out of 42 remained
in the list (Fig. 3F). To validate the importance of selected features,
they were entered into weighed XGBoost again. The performance met-
rics decreased insignificantly as compared to the full dataset (F1=0.29,
ROC-AUC=0.75). Then permutation test was performed to confirm the
result, showing F1 score for eight random features to be 0.13 (Table 4
Supplementary). Thus, the set of eight factors contributes the most to
the increased probability of HAVM development, because it explains
most of the variance in ML model.

By usingMLwe also identified factors, which did not have any influ-
ence on HAVM development, such as gender, hemodialysis, hypother-
mia, total parenteral feeding, medical sedation, bloodstream infection,
congenital disorders, spinal or other non-brain diseases on admission,
and spinal surgery (these factors have F1 = 0 in all ML models).

4. Discussion

We studied two groups of high-risk patients (with and without
HAVM) that were similar by age, gender, diagnosis, and comorbidity.
However, patientswithHAVMhad a 2.25 times higher all-causemortal-
ity rate as compared to thosewithoutHAVM(attributablemortalitywas
16.2%). The result is consistent with the literature [3] and highlights the
importance of HAVM prevention in a neuro-ICU.

We found the cumulative incidence of HAVM (9.45% or 4.71 cases per
1000 patient-days) that is similar to previously published research.
HAVM after craniotomy was registered in 8.6–8.9% of neurosurgical pa-
tients [6,12]. The incidence of EVD-associated HAVM was 4.3% [95% CI
3.47–5.13] per 100 high-risk patients or 14.47% [95% CI 11.8–17.1] per
100 patients with EVD. In literature, this value widely varies in different
studies reaching 23.2% [15] and even 32.7% [36]. The risk-adjusted inci-
dence ratewas found to be 17.16HAVMcases per 1000 EVD-days. It liter-
ature this index also varies: one study found it to be 6.3 per 1000 device-
in the ICU. Only factors with adjusted p-value b0.01 are shown, for the full result table see
ann-Whitney testwasused for ordinal variables. Adjusted p-valueswere obtained byusing

non HAVM (n = 2070) p-Value Adjusted p-value

CI Number of patients (%) 95% CI

18–61.81] 527 (25.5%) [23.58–27.34] 0.0000 0.0000
50–91.53] 1961 (94.7%) [93.77–95.70] 0.0000 0.0011
8–14.54] 57 (2.8%) [2.05–3.46] 0.0000 0.0000
87–21.72] 135 (6.5%) [5.46–7.59] 0.0000 0.0002
4–15.21] 52 (2.5%) [1.84–3.19] 0.0000 0.0000
92–67.31] 560 (27.1%) [25.14–28.97] 0.0000 0.0000
58–71.63] 816 (39.4%) [37.32–41.53] 0.0000 0.0000
38–31.06] 270 (13.0%) [11.59–14.49] 0.0000 0.0017
ian [Q1;Q3] Mean ± Std Median [Q1;Q3] p-Value Adjusted p-value
.0; 9.0] 11.60 ± 10.05 9 [5.0; 15.0] 0.0001 0.0073
.25; 9.75] 11.88 ± 10.86 9 [5.0; 15.0] 0.0001 0.0075
.0; 2.0] 1.20 ± 0.47 1 [1.0; 1.0] 0.0000 0.0006
.0; 2.0] 1.33 ± 0.71 1 [1.0; 1.25] 0.0000 0.0000
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Fig. 2.Multivariate logistic regression on the normalized data set. A: odds ratios (OR) of features coefficients, errorbars represent adjusted 95% confidence interval (CI). B: ROC-AUC curve
and confusion matrix for logistic regression model after 10 cross-validations on the not correlated features. ROC-AUC shows resulting mean curve (blue line) and standard deviation
(shadowed grey area), confusion matrix shows mean PPV (positive predictive value) and NPV (negative predictive value); color gradient reflects a proportion of true labels to
predicted labels. C: performance of logistic regression model on the different datasets - full set of 88 features, not correlated (vif ≤ 2.5) features from the full dataset (n = 27), and not
correlated features from statistical inference (n = 6) Mean and standard deviation for each metric after 10 cross-validations. Abbreviations: EVD - external ventricular drain; CSFL-NE -
CSF leak from nose or ears; CSFL-SS - CSF leak from surgical site; SSSI - superficial surgical site infection after neurosurgery; INSD - implantation of neurosurgical devices; EETS -
endoscopic endonasal transsphenoidal surgery, CCI - Charlson comorbidity index. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)
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days [37], while the other one reported 10.4 per 1000 EVD-days [38].
Relatively high incidence can be explained by specific selection of the
high-risk patients' population, and intentionally reduced denominator.

4.1. HAVM risk factors

The overlapping of five lists of important factors resulted in six clin-
ically relevant groups, with five independent groups among them (Fig.
3F). We considered INSD and EVD as dependent variables and analyzed
them together.

The most important risk factor is EVD&INSD (nine hits in total).
All five methods found EVD to be important, confirming the broadly
accepted thesis that EVD is a risk factor of HAVM [1]. ML-based
methods added that the number of days with EVD increases the
risk of HAVM. It supports earlier findings that EVD enhances the
risk of meningitis proportionally to the number of device-days
[1,39].

The second factor associated with HAVM development is craniot-
omy (five hits). Three methods identified recraniotomy, the number
of craniotomies, and the total length of all craniotomies as important.
Thus, the more craniotomies a patient has and the longer they are, the
more chances for him to develop HAVM. This finding is clearly in line
with earlier reports [1,11]. However, the RR analysis failed to identify
craniotomy as a risk factor in a neuro-ICU (Fig. 1A).
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± standard deviation after 10 cross-validations are shown for eachmetrics. B: performance of weighted XGBoost classifier evaluated by ROC-AUC curve and confusion matrix on the full
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Supplementary. E: feature importance evaluated by a scoring function (see description in the text) after 10 cross-validations. F: top-6 grouped HAVM risk factors (first column) that
include features selected as important (second column) by one of the five evaluation methods (a hit is marked by +). Abbreviations: CSFL-NE - CSF leak from nose and/or ears; CSFL-
SS - CSF leak from a surgical site; SSSI - superficial surgical site infection; INSD - implantation of neurosurgical devices; EVD - external ventricular drain.
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The next important factor is SSSI (four hits). According to RR analy-
sis, SSSI is an independent factor increasing the probability of HAVM by
2.54 (Fig. 1A). In patients with SSSI the case of HAVM may be called
organ/space SSI (according to the CDC definitions of both terms).
Thus, we found that the presence of superficial SSI increases the risk
of organ/space SSI, which seems to be a reasonable concept, however
have not been reported yet for HAVM.

The other important risk factor is CSF leakage from both surgical site
and nose/ears. The presence of CSF leak enhances the incidence of
HAVM by 1.93–2.18 (Fig. 1A). Also, ML algorithms revealed that the du-
ration of CSF leak is associatedwith increased probability of HAVM. Pre-
vious publications have also mentioned CSF leak as a risk factor of
HAVM [1,40].
The last factor on the list (other surgeries) is likely to be a confound-
ing variable. Most of these surgeries were tracheotomy or surgical pro-
cedures in combined trauma, that can be considered as a sign of more
severe initial conditions in patients with HAVM.

4.2. Practical importance of study findings

We identified four risk factors for HAVM development in high-risk
neuro-ICU patients: EVD, craniotomy, SSSI and CSF leak. In accordance
with the literature, these factors are common for neuro-ICUs world-
wide. Also, they are reproducible and do not depend on clinical/statisti-
cal methodology and local clinical practice. Thus, the results from this
study may be considered reliable and may be used as an evidence
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basis for HAVM prevention strategy development. We suggest that the
clinical practice improvement in terms of HAVM prevention can be
reached by concentrating efforts on four listed factors. Possible mea-
sures can include the decrease of aggressive interventions, the limita-
tion of invasive devices usage with specific attention to the
combination of invasive procedures in one patient. In this study, we
also found the evidence of the nonlinear nature of HAVM risk factors
with most of them being time-dependent. Therefore, one should con-
sider the possibility to remove the invasive device as soon as possible
as a result of early risk factors assessment (specifically, four factorsmen-
tioned above). We also suggest extensive collaboration with neurosur-
geons to prevent CSF leak and the excessive craniotomy duration. In
addition, we revealed that endonasal transsphenoidal surgery places
the additional risk of HAVM on patients (RR = 1.95) and therefore re-
quires special attention, however, further investigation is needed to fig-
ure out the potential reasons for this.

Thus, we encourage clinicians to decrease both the number of risk
factors and the duration of their presence to prevent HAVM in the
neuro-ICU patients. That said, the development of specific recommen-
dations should be a topic of further research.

4.3. Study limitations

The current study has certain limitations. It is a single-center study
in highly specialized ICU facility, thus, one should be careful when gen-
eralizing the results to the other hospitals. The surveillance approach
was unit-based, but within the ICU we studied only the high-risk pa-
tients, not the entire ICU population. Thus, reported HAVM incidence
is higher than the one calculated on the entire ICU population.We iden-
tified one confounding variable in our analysis, yet it is possible, that
there aremore than one. The weighted XGBoostmodel we used for fea-
ture selection cannot be used for HAVM prediction in clinical practice.
Further research may be done to build effective models for predicting
HAVMbyusingwidely known engineering approaches: polynomial fea-
tures based on EVD days, additional data preprocessing and increasing
training samples, and fine-tuning hyper-parameters. However, such
predictive models may be difficult to interpret from a clinical point of
view due to their complexity.

5. Conclusion

In this study, we assessed the incidence of HAVM and specifically
EVD-associated HAVM in a high-risk patient population in a neuro-
ICU. It is the first report of this kind from Russia that studies the
neuro-ICU facility where evidence-based infection prevention and sur-
veillance program was implemented.

We also showed that in HAVM risk factors analysis, tree-based ML
algorithms performed better than regression models and allowed to re-
veal non-linear time-dependent features. We increased the reliability
and accuracy of risk factors selection by combining the results from
RR, regressions andMLmethods. Thus, we identified four factors associ-
ated with HAVM development both by itself and in a time-dependent
manner: EVD, craniotomy, superficial SSI, and CSF leakage. These factors
are reproducible, do not depend on study methodology and therefore
may be used as a ground for planning HAVM prevention strategy. We
suggest that the number of found risk factors and the duration of their
presence in patients should be reduced to prevent HAVM.However, fur-
ther research regarding preventive measures is required.
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