Изменение подходов к использованию кристаллоидов

В.А. Мазурок

СЗФМИЦ им. В.А. Алмазова Санкт-Петербург

Холера, 1832 г.

• Впервые в/в теплый гипотонический раствор «2 драхмы солянокислой соли, 2 крупицы карбоната натрия в 6 унциях воды» с «...немедленным появлением пульса и улучшением дыхания».

Lewins R, Lewins R. Injection of saline solutions in extraordinary quantities into the veins in cases of malignant cholera. Lancet 1832

Холера, 1832 г.

· «...профессионалы не могут решить; вместо единого отсюда, подхода, каждый город и деревня имеют собственные ...необходимо клиническое исследование разрешения ДЛЯ конфликта...».

The cases of cholera successfully treated. The Lancet 1832; 18:284-286.

INVITED COMMENTARY

The quest for the holy volume therapy

Edoardo De Robertis, Arash Afshari and Dan Longrois

• Почти 200 спустя:

- Идеальный режим инфузии для волемии и гидратации - предмет дебатов и неопределенности.

- Выпускник университета в Эдинбурге (22 г.);
- Лекция Вестминскому мед. обществу (02.12.1831):
 - Новый метод лечения "blue epidemic cholera": введение жидкости и солей для борьбы с "всеобщим застоем венозной системы».
 - Публикация в the Lancet несколькими днями позже.
 - Технологию введения жидкости еще предстоит открыть...

• То, что выглядит как бутыль с водой или мочой - "рисовый водянистый стул" холерного больного.

Gill G. William O'Shaughnessy and the forgotten cure for cholera in the 1832 British epidemic.

The history of 0.9% saline

Sherif Awad, Simon P. Allison, Dileep N. Lobo*

- Англия: почти 10 млн. литров в год;
- Происхождение 0.9% NaCl неясно:
 - С эпидемии холеры в Англии в 1831 г.?
- Однако растворы Latta, Jennings и др. мало похожи на 0.9% NaCl.
- · «КАК ОН СТАЛ «ФИЗИОЛОГИЧЕСКИМ»??! ,

Clinical Nutrition (2008) 27, 179-188

ScienceDirect http://intl.elsevierhealth.com/journals/clnu

available at www.sciencedirect.com

The history of 0.9% saline

Sherif Awad, Simon P. Allison, Dileep N. Lobo*

Ни один раствор 1832-95 гг. не похож на 0.9% NaCl

1832: Craigie's solution²² 1832: Meikle's solution³² 1832: Latta's solution 330

1832: Latta's solution 431 1849: Henry Howlett's solution²⁷

solution29,a

Name of solution

1832: Latta's solution 120

1832: Latta's solution 210

1853: Owen Rees' solution35

1866: Murchison's solution34 1871: Marsden's solution3

Table 3 Composition of early saline solutions

Constituents

of soda, 60 ounces of water

of soda, 2 pounds agua calid

with protoxide of azote

saline matter ..."

potash, 1 quart water

specific gravity 1030

2 pints of water

chloride, 48 ounces water

2 drachms muriate of soda, 2 scruples carbonate

1 drachm muriate of soda, 10 grains carbonate

of soda, 2 ounces albumen, 10 pounds water

4 drachms muriate of soda, 4 scruples carbonate

subcarbonate of soda, 1 pound water saturated

"... the solution I used contained a third more

1 drachm common salt, half drachm sulphate of

soda, half ounce sulphate of soda, small portions

One and a half drachms chloride of sodium, half

phosphate of soda, 5 grains carbonate of soda,

3 drachms chloride of sodium, half drachm

subcarbonate of soda, 15 grains potassium

6 grams cooking salt, 0.05 grams sodium

hydroxide, in 1 litre distilled water

of soda, One and a half ounces carbonate of

of distilled water added to make solution of

drachm chloride of potassium, 10 grains

2-3 drachms muriate of soda, 2 scruples

subcarbonate of soda, 6 pints of water

Half drachm muriate of soda, 8 grains

1879: Kronecker and Sander's

1883: Egerton Jenning's solution²⁸ 50 grains chloride of sodium, 3 grains chloride of potassium, 25 grains sulphate of soda, 25 grains carbonate of soda, 2 grains phosphate of soda (Na₃PO₄), 2 drachms absolute alcohol, in 20 ounces of water 1883: Szumann's solution²⁶ 6 g common salt, 1 g sodic carbonate, in 1000 g

distilled water 1883: Ringer's solution37,b 6 g sodium chloride, 3.1 g sodium lactate, 300 mg potassium chloride and 200 mg calcium chloride in 1000 ml water 1888: Churton's solution39 3 drachms of chloride of sodium, 18 grains of chlorate of potash, 9 grains of phosphate of

soda, and 60 grains of bicarbonate of soda, in 3 pints of distilled water 1891: Richardson's solution36 1892: Pve-Smith's solution40

1898: Thelwall Thomas's solution 41 6 parts of sodium chloride to 1000 parts of

boiled water sterilised water

30 grains chloride of sodium, 15 grains phosphate of soda, 1 pint distilled water Na⁺ 107 mmol/l, Cl⁻ 91 mmol/l, HCO₂ 16 mmol/l Na+ 134 mmol/l, Cl- 118 mmol/l,

solution

CO32- 14 mmol/l

HCO₃ 9 mmol/l

CO₃² 8 mmol/l

HCO₃ 16 mmol/l Na+ 58 mmol/l, Cl- 58 mmol/l, K+ 19 mmol/l, SO₄ - 10 mmol/l 3 ounces chloride of sodium, one ounce phosphate As the volume of water used is not

Modern equivalents, mmol/l of

Na+ 106 mmol/l, Cl- 78 mmol/l,

Na⁺ 103 mmol/l, Cl⁻ 88 mmol/l,

Na+ 98 mmol/l, Cl- 72 mmol/l,

CO₃²⁻ 13 mmol/l, albumen 17 g/l

Na+ 48-68 mmol/l, Cl- 39-59 mmol/l

known, we are unable to calculate the concentrations of the various anions and cations

Na+ 130 mmol/l, Cl- 143 mmol/l,

 K^{+} 29 mmol/l, PO_{4}^{2-} 4.5 mmol/l, CO₂² 3.4 mmol/l

Na⁺ 162 mmol/l, Cl⁻ 154 mmol/l, K⁺ 12 mmol/l, HCO₃⁻ 17 mmol/l

Na⁺ 104 mmol/l, Cl⁻ 103 mmol/l,

OH 1 mmol/l Na+ 190 mmol/l, Cl- 101 mmol/l, K^+ 5 mmol/l, SO_4^{2-} 19 mmol/l,

 CO_3^{2-} 26 mmol/l, PO_4^{2-} 2 mmol/l, 12 ml alcohol Na+ 122 mmol/l, Cl- 103 mmol/l,

CO2- 9 mmol/l Na+ 130 mmol/l, K+ 4 mmol/l, Ca²⁺ 1.5 mmol/l, Cl⁻ 109 mmol/l,

C₃H₅O₃ (lactate) 28 mmol/l Na+ 150 mmol, Cl- 128 mmol, PO₄²⁻ 2.5 mmol, HCO₃⁻ 27 mmol

Na⁺ 76 mmol/l, Cl⁻ 55 mmol/l, PO₄²⁻ 11 mmol/l

1 drachm of common salt to 1 pint of recently Na⁺ 116 mmol/l, Cl⁻ 116 mmol/l

Na+ 103 mmol/l, Cl- 103 mmol/l

6 g sodium chloride, 3.22 g sodium lactate, Na⁺ 131 mmol/l, K⁺ 5 mmol/l,

400 mg potassium chloride and 270 mg calcium Ca²⁺ 2 mmol/l, Cl⁻ 111 mmol/l, C₃H₅O₃ (lactate) 29 mmol/l Na⁺ 154 mmol/l, Cl⁻ 154 mmol/l

1932: Hartmann's solution 38,51-53

chloride in 1000 ml water 9 g sodium chloride in 1 l water

0.9% sodium chloride

Отец физраствора?

- 1888 г. Hartog Jakob Hamburger (Голландия):
 - Физиолог, химик, патолог ветеринарной школы Университета Utrecht.
- 1896 г. первое упоминание о похожем на 0.9% NaCl растворе:
 - 0.92% соль «нормальна» для крови млекопитающих.

THE LANCET, NOVEMBER 19, 1921.

PERMEABILITY IN PHYSIOLOGY AND PATHOLOGY.

Delicered at the University of London, under a Scheme for Exchange of Lectures in Medicine between England and Holland,

By H. J. HAMBURGER, Sc.D., M.D., LL.D., F.R.S., PROPESSOR OF PHYSIOLOGY IN THE UNIVERSITY OF GRONINGEN (HOLLAND).

involve the whole of physiology. I shall be obliged, therefore, to limit my discussion to a few illustrative examples. In the choice of these I shall, while regardful of the suum cuique, also refer to my own work which, alas, has of late been too often overlooked. Who is there, however, of the senior among us who has no reason to complain of neglect? Moreover, these lectures are, I think, expected to have a personal flavour, and it is better so.

The study of the permeability of the animal cell may be said to have been introduced by researches which I carried out in 1889. These investigations arose from my work in 1883 on the influence of salt solutions on the escape of colouring matter from the red blood corpuscles. A year previously (1882)

HAMBURGER, Hartog Jacob (1859-1924)

• «Кровь большинства млекопитающих, включая людей, изотонична 0.9% NaCl, а не 0.6% как ранее полагали...».

Теория изотоничности 0.9% NaCl крови человека никогда не была принята широкой общественностью.

Lazarus-Barlow WS. J Physiol 1896.

- «Доказательства пользы 0.9% NaCl, кажется, основаны лишь на этом in vitro исследовании».
- Как раствор стал клинически общепринятым?
 - Простота, удобство, дешевизна?

Теория изотоничности 0.9% NaCl крови человека никогда не была принята широкой общественностью.

Lazarus-Barlow WS. J Physiol 1896.

- «Доказательства пользы 0.9% NaCl, кажется, основаны лишь на этом in vitro исследовании».
- Как раствор стал клинически общепринятым?
 - Простота, удобство, дешевизна?

"Normal" 0.9% Salt Solution Is Neither "Normal" Nor Physiological Khalil G. Wakim, MD

- Термины «нормальный» или «физиологический», применяемые без научного обоснования к 0.9% NaCl, послужили широкому применению раствора:
 - Ни химически нормальный (58.5 г NaCl /л);
 - Ни физиологически идентичный внеклеточной жидкости.

• Задержка жидкости:

- По сравнению с 5% глюкозой.

Coller FA, et al. JAMA 1936.

- Больше п/о за счет снижения способности выделять избыток Na и воды.

Coller FA, et al. Ann Surg 1944.
Wilkinson AW, et al. Lancet 1949.
Le Quesne LP, Lewis AAG. Lancet 1953.
Moore FD. Philadelphia, PA: WB Saunders; 1959.
Tindall SF, Clark RG. Br J Surg 1981.

- Классический метаболический ответ на травму.

Stoneham MD, Hill EL. Br J Clin Pract 1997. Lobo DN, et al. Clin Nutr 2001. Tambyraja AL, et al. World J Surg 2004.

Задержка жидкости:

- По сравнению с 5% глюкозой.

Coller FA, et al. JAMA 1936.

- Больше п/о за счет снижения способности выделять избыток Na и воды.

Coller FA, et al. Ann Surg 1944.
Wilkinson AW, et al. Lancet 1949.
Le Quesne LP, Lewis AAG. Lancet 1953.
Moore FD. Philadelphia, PA: WB Saunders; 1959.
Tindall SF, Clark RG. Br J Surg 1981.

- Классический метаболический ответ на травму.

Stoneham MD, Hill EL. Br J Clin Pract 1997. Lobo DN, et al. Clin Nutr 2001. Tambyraja AL, et al. World J Surg 2004.

- Задержка жидкости:
 - НЕБЕЗОБИДНА!
 - Связана с п/о осложнениями и летальностью!

Tambyraja AL, et al. World J Surg 2004.

Moore FD, et al. Ann Surg 1967.

Starker PM, et al. Ann Surg 1983.

Gil MJ, et al. Nutrition 1997.

Arieff AI. Chest 1999.

Alsous F, et al. Chest 2000.

Lobo DN, et al. Lancet 2002.

Brandstrup B, et al. Ann Surg 2003.

Lobo DN, et al. Best Pract Res Clin Anaesthesiol 2006.

Nisanevich V, et al. Anesthesiology 2005.

Jacob M, et al. Lancet 2007.

- Даже для здоровых!
 - 2 л за час 0.9% соли & p-ра Хартмана:
 - · <u>Через 6 час задержка 56% NaCl против 30% Хартмана.</u>

Reid F, et al. Clin Sci (Lond) 2003.

- · Выраженная и продленная гипер-С1-емия.
- Инфузия больших объемов:
 - Дискомфорт в животе, боль, тошнота;
 - Сонливость, > умственных способностей для решения сложных задач.

Williams EL, et al. The effect of intravenous <u>lactated Ringer's solution versus 0.9% sodium</u> chloride solution on serum osmolality in human volunteers. Anesth Analg 1999.

REVIEW

Open Access

latrogenic salt water drowning and the hazards of a high central venous pressure

Paul E Marik

«Смертельное трио»

- Либеральная инфузионная терапия;
- ЦВД >8 мм рт.ст.;
- · Доминирующее использование 0.9% NaCl.

→ РИСК: ОПН, ДН, ЭНТЕРОПАТИИ И СМЕРТИ

Состав

Инфузионная терапия

«Всё есть яд, и ничто не лишено ядовитости; одна лишь доза делает яд незаметным»

OPEN

EJA

GUIDELINES

Intravascular volume therapy in adults

Guidelines from the Association of the Scientific Medical Societies in Germany

Gernot Marx, Achim W. Schindler, Christoph Mosch, Joerg Albers, Michael Bauer, Irmela Gnass, Carsten Hobohm, Uwe Janssens, Stefan Kluge, Peter Kranke, Tobias Maurer, Waltraut Merz, Edmund Neugebauer, Michael Quintel, Norbert Senninger, Hans-Joachim Trampisch, Christian Waydhas. Rene Wildenauer, Kai Zacharowski and Michaela Eikermann

Териоперационно сбалансированные растворы

Современный тренд

· «Возмещение внеклеточных потерь жидкости

<u>ИЗОТОНИЧЕСКИМИ КРИСТАЛЛОИДАМИ (2C)»</u>

EJA

Eur J Anaesthesiol 2013; 30:270-382

GUIDELINES

Management of severe perioperative bleeding

Guidelines from the European Society of Anaesthesiology

Инфузионный ацидоз

- pH = 3,5-7
 - NaCl/глюкоза...
- + Разбавление HCO₃-
- + Гиперхлоремия

кифотверовительный

KOC	И	I	азы	кро	ВИ

Название теста	Ед.Изм.	02.04.15	02.04.15	00.0445	100011	10001-	00.04.5.5	1 00 04 15	02.04.15
	DAVIDIN.	02.04.15	02.04.15	02.04.15	02.04.15	02.04.15		02.04.15	19:59
		2090900	03:04	07:05	11:05	12:56	15:09	17:14	2090885
рН (артерия)	AT		2090891	2014257	2090895	2090889		2092681	7.42
рН (вена)	ед.	7.37	7.40	7.39	7.32 <	7.48 >	7.40	7.44	1.42
рО2 (артерия)	ед.	100						7.42 >	00
рО2 (вена)	mmHg	102 >	115 >	142 >	80	74 <	88	96	80
рСО2 (артерия)	mmHg							47 >	2.5
	mmHg	34	31 <	34	43	29 <	34	34	35
рСО2 (вена)	mmHg							37	
АВЕ (артерия)	ммоль/л	-4.8 <	-4.1 <	-3.8 <	-3.9 <	-1.1	-3.1 <	-0.3	-1.2
ABE (BeHa)	ммоль/л							-0.1	
НСО3-(Р) (артерия)	ммоль/л	19 <	19 <	20 <	22	21	21	23	22
HCO3-(P) (вена)	ммоль/л							24	
sO2 (артерия)	%	97	98	98	95	94 <	96	97	94 <
sO2 (вена)	%							83 >	
ctHb (артерия)	г/л	132	128	124	133	133	122	134	125
стНь (вена)	г/л							130	
Нст (артерия)	%	0.40	0.39	0.38	0.41	0.41	0.38	0.41	0.39
Нсt (вена)	%							0.40	
К+ (артерия)	ммоль/л	4.3	4.7	4.9	4.4	4.2	4.2	4.1	3.8
К+ (вена)	ммоль/л							4.1	
Na+ (артерия)	ммоль/л	161 >	158 >	157 >	160 >	154 >	158 >	153 >	159 >
Na+ (вена)	ммоль/л							154 >	
Са2+ (артерия)	ммоль/л	1.12	1.23	1.23	1.26	1.14	1.23	1.13	1.21
Са2+ (вена)	ммоль/л							1.14	
С1- (артерия)	ммоль/л	125 >	141 >	138 >	139 >	133 >	136 >	131 >	133 >
С1- (вена)	ммоль/л							132 >	
Glu (артерия)	ммоль/л	11.7 >	10.7 >	16.6 >	9.2 >	11.1 >	12.8 >	10.0 >	9.2 >
Glu (вена)	ммоль/л							10.00 >	7.4
Lac (артерия)	ммоль/л	1.6	1.3	1.8	1.1	1.2	1.4	1.1	1.2
Lac (вена)	ммоль/л							1.3	1.4
ctO2 (артерия)	ммоль/л	17.6 >	17.3 >	16.9 >	17.2 >	17.3 >	16.2 >	17.8 >	16.3 >
стО2 (вена)	ммоль/л							14.6 >	10.0
р50 (артерия)	mmHg	31.9 >	25.8	26.4	29.3 >	28.1	28.6	29.4 >	30.8 >
р50 (вена)	mmHg							27.1	30.0 >
Осмолярность (артерия)	mOsm/kr	334 >	327 >	331 >	330 >	318 >	329 >	317 >	327 >
Осмолярность (вена)	mOsm/kr							318 >	3412
стСО2(В) (артерия)	ммоль/л	38.40	38.60	40.40	43.70	41.10	41.80	44.80	44.70
ctCO2(B) (вена)	ммоль/л						1.00	47.20	44.70

экспресс-лаооратория

КОС и Газы крови	Ед.Изм.	04.04.15	04.04.15	04.04.15	04.04.15	T 05 04 15 T	05.04.15
Название теста		06:38	12:35	16:20	04.04.15	05.04.15	05.04.15 06:29
		2041381	1879433	1879430	1879392	00:01	2041380
-	ед.	7.48 >	7.49 >	7.49 >	7.50 >	7.46 >	7.45
Н (артерия)	ед.	7.42 >	7.43 >	7.43 >	7.43 >		7.40
Н (вена)	mmHg	133 >	110 >	90	88	7.45 >	131 >
О2 (артерия)	mmHg	35	43 >	42 >		90	58 >
O2 (BeHa)	mmHg	36	37	36	38	39	41
СО2 (артерия)	mmHg	44	43	THE RESERVE OF THE PERSON NAMED IN COLUMN 2 IS NOT THE PERSON NAME	36		45
СО2 (вена)		3.3 >	4.1 >	45	43	40	4.1 >
ВЕ (артерия)	ММОЛЬ/Л			4.5 >	4.4>	3.5 >	
ВЕ (вена)	ммоль/л	3.9 >	3.9 >	4.4 >	4.3 >	3.6 >	3.0 >
СОЗ-(Р) (артерия)	ммоль/л	26	27	28	27	27	28 28
СО3-(Р) (вена)	ммоль/л	28	28	29 >	29 >	27	99
02 (артерия),	%	98	97	97	95	97	88 >
02 (вена)	%	64	72	71	65	73	
Нь (артерия)	г/л	120	121	116	114 <	114 <	115
Нь (вена)	г/л	118	120	110 <	110 <	106 <	111 <
сt (артерия)	%	0.37	0.37	0.36	0.35	0.35	0.35
ст (вена)	%	0.37	0.37	0.34 <	0.34 <	0.33 <	0.34 <
+ (артерия)	ммоль/л	4.0	3.9	4.4	4.2	4.2	
+ (BeHa)	MMOJE/J	3.8	3.9	4.0	4.2	3.9	4.6
а+ (артерия)	ммоль/л	144	143	142	142	144	138
а+ (вена)	ммоль/л	145	149	149	148	144	145
а2+ (артерия)	ммоль/л	0.95 <	0.95 <	0.96 <	0.90 <	1.08 <	0.94 <
а2+ (вена)	ммоль/л	0.92 <	0.89 <	1.05 <	0.92 <	0.79 <	0.83 <
l- (артерия)	ммоль/л	120 >	116>	114>	113 >	117>	113 >
l- (вена)	ммоль/л	112 >	107	108	107	114>	105
lu (артерия)	ммоль/л	8.2 >	9.3 >	7.4 >	5.5	7.7 >	6.9 >
lu (вена)	ммоль/л	7.60 >	9.70 >	7.20 >	5.30	7.40 >	6.40 >
ас (артерия)	ммоль/л	1.5	1.6	1.1	0.9	1.0	1.6
ас (вена)	ммоль/л	1.6	1.7	1.2	1.0	1.2	1.3
:О2 (артерия)	ммоль/л	16.4 >	16.3 >	15.4 >	15.1 >	15.1 >	15.6 >
tO2 (вена)		10.4 >	11.9 >	10.6 >	9.9 >	10.6 >	13.5 >
50 (артерия)	ммоль/л	24.0 <	35.1 >	26.9	31.6 >	26.3	24.9 <
50 (вена)	mmHg	28.4	30.0 >	30.4 >	30.5 >	26.8	28.4
)CMO Japan (-	mmHg	20.4	296>	291 >	289	296 >	282

КОС и Газы крови Название теста	Ед.Изм.	05.04.15	05.04.15	0.5.01		
Название тести		06:29	12:01	05.04.15	05.04.15	06.04.15
		2041380	2090850	16:54	23:28	06:18
рН (артерия)	ед.	7.45	7.52 >	1879411	2090843	2041279
рн (артерия)	ед.	7.40	1.52 >	7.49 >	7.52 >	7.49 >
рО2 (артерия)	mmHg	131 >	86	7.46 >		7.45 >
рО2 (вена)	mmHg	58 >	00	93	106 >	82
рСО2 (артерия)	mmHg	41	34	34		34
рСО2 (вена)	mmHg	45	34	38	34	36
АВЕ (артерия)	ммоль/л	4.1 >	4.4 >	42		43
ABE (Beha)	ммоль/л	3.0 >	4.4 /	5.1 >	5.0 >	4.5 >
нсоз-(Р) (артерия)	ммоль/л	28	27	5.6 >	20	5.8 >
НСОЗ-(Р) (вена)	ммоль/л	28	21	28	28	28
О2 (артерия)	%	99	95	30 > 95	06	30 >
602 (вена)	%	88 >	93		96	97
tHb (артерия)	г/л	115	111 <	64	100 -	65
tHb (вена)	г/л	111<	1111	113 <	106 <	99 <
Ист (артерия)	9/0	0.35	0.34 <	114 <	0.22	99 <
Ист (артерия) Ист (вена)	%	0.34 <	0.34 <	0.35	0.33 <	0.31 <
т+ (артерия)	ммоль/л	0.34	4.8	0.35	4.4	0.31 <
(+ (вена)	ммоль/л	4.6	4.0	5.4 > 4.9	4.4	4.3
		138	138	139	136	140
Va+ (артерия)	ммоль/л	145	130	138	130	139
Va+ (вена)	ммоль/л	0.94 <	0.94 <	1.01 <	0.89 <	0.88 <
(a2+ (артерия)	ммоль/л	0.83 <	0.94	0.96 <	0.05	0.88 <
<u>а2+ (вена)</u>	ммоль/л		112 >	112 >	107	111 >
1- (артерия)	ммоль/л	113 >	112 -	109	107	109
1- (вена)	ммоль/л	105	5.0	7.3 >	5.8	7.1 >
lu (артерия)	ммоль/л	6.9 >	3.0	7.10 >	3.0	6.70 >
lu (вена)	ммоль/л	6.40 >	0.8	1.2	1.2	1.2
ас (артерия)	ммоль/л	1.6	0.0	1.1	1.2	1.1
ас (вена)	ммоль/л	1.3	14.8 >	14.9 >	14.3 >	13.1 >
О2 (артерия)	ммоль/л	15.6 >	14.0 -	10.1 >	14.5	8.8 >
О2 (вена)	ммоль/л	13.5 >	29.8 >	33.7 >	35.5 >	24.7 <
50 (артерия)	mmHg	24.9 <	29.0	27.5	33.3	26.8
50 (вена)	mmHg	28.4	201	286	278 <	
смолярность (артерия)	mOsm/кг	282	281	283	276	286 285
смолярность (вена)	mOsm/кг	297 >	54.20	57.20	55.90	
СО2(В) (артерия)	ммоль/л	56.70	54.30	60.20	33.90	56.60
СО2(В) (вена)	ммоль/л	57.00	(2.90	66.20	64.20	62.10 25
СО2(Р) (артерия)	ммоль/л	65.60	62.80	69.10	04.20	64.30
СО2(Р) (вена)	ммоль/л	65.30		07.10		70.00

Кристаллоиды

- Прежде всего Nараствора/Nаплазмы
 - Гипотонические
 - Изотонические
 - Гипертонические
 - Изотонические → плазма/интерстиций
 - Гипотонические → частично в клетки

Осмотическая сила: теоретическая и фактическая

Плазма:

- Теоретическая 291 ммоль/л
- Φ актическая 286 ± 5 ммоль/кг H_2O
- "Физиологический" раствор
 - Теоретическая 308 ммоль/л (154 + 154)
 - Φ изиологическая 286 ммоль/кг H_2O
 - Осмотический коэффициент 0,926 (активно только 93% NaCl)

Изотоничность

• Фактическая (эффективная)

осмотическая сила = плазменной

- 5% декстроза в воде: in vitro - изотоническая

in vivo - чистая вода

Кристаллоидные растворы

Раствор	0CM0-	Na+	K+	Ca2+	Mg2+	CI-	HCO3-	Лактат	ацетат	малат	глю-	глю-	Избыток
·	лярность	ммоль	ммоль/л	ммоль	конат	коза	оснований						
	ммоль/л	/л	/n	/n	/л	/n	/п	<i>I</i> n		/n	ммоль	r/л	BE pot
											/n		ммоль/л
Стерофун-	304,0	140,0	4,0	2,5	1,0	127,0	-	-	24,0	5,0	-	-	-
дин изото-													
ниический													
Стерофун-	576,0	140,0	4,0	2,5	1,0	141,0	-	-	-	10,0	-	50,0	-
дин Г-5													
Нормофун-	530,0	100,0	18,0	2,0	3,0	90,0	-	-	38,0	-	-	50,0	-
дин Г-5													
Плазмалит -	296,0	140,0	5,0	-	3,0	98,0	-	-	27,0	-	23,0	-	26,0
148													
Ионостерил	291,0	137,0	4,0	1,7	1,2	110,0		-	36,8	-		-	13.0
S.NaCl 0,9%	309,0	154,0	-	-	-	154,0	-	-	-	-	-	-	-
Рингер	309,0	147,0	4,0	2,2	1,0	156,0	-	-	-	-	-	-	-24,0
Рингер	276,0	130,0	5,0	1,0	1,0	112,0	-	27,0	-	-	-	-	3,0
лактат													
Ацесоль	244,0	109,0	13,0	-	-	99,0	-	-	23,0	-	-	-	- 1,0
Хлосоль	294,0	124,0	23,0	-	-	105,0		-	42,0	-	-	-	18.0
Дисоль	252,0	126,0		-		103,0	-	-	23,0		-	-	-1,0

Кристаллоидные растворы

Раствор	OCMO-	Na+	K+	Ca2+	Mg2+	CI-	HCO3-	Лактат	ацетат	малат	глю-	глю-	Избыток
Гаствор			ммоль	ммоль	ммоль	ммоль	ммопь	ммоль	ммоль/л	ммоль	KOHAT	коза	оснований
	лярность	ммоль /л	/л	/п	/n	/in	/л	/n	MIMOLIBATI	/л		г/п	BE pot
	ммоль/л	711	101	///	191	""	711	ווו		111	ммоль '=	1/11	
	22.4.2	4.40.0				4070			212		Л		ммоль/л
Стерофун-	304,0	140,0	4,0	2,5	1,0	127,0	-	-	24,0	5,0	-	-	-
дин изото-													
ниический													
Стерофун-	576,0	140,0	4,0	2,5	1,0	141,0	-	-	-	10,0	-	50,0	-
дин Г-5	'					'						·	
Нормофун-	530,0	100,0	18,0	2,0	3,0	90,0	-	-	38,0	-	_	50,0	-
дин Г-5	,	,	·	,	,				,			·	
Плазмалит -	296,0	140,0	5,0	-	3,0	98,0	-	-	27,0	-	23,0	-	26,0
148	·				-	-					·		
Ионостерил	291,0	137,0	4,0	1,7	1,2	110,0	-	-	36,8	-	-		13,0
S.NaCl 0,9%	309,0	154,0	-	-	-	154,0	-	-	-	-	-		-
Рингер	309,0	147,0	4,0	2,2	1,0	156,0	-	-	-	-	-	-	-24,0
Рингер	276,0	130,0	5,0	1,0	1,0	112,0	-	27,0	-	-	-	-	3,0
лактат													
Ацесоль	244,0	109,0	13,0	-	-	99,0	-	-	23,0	-	-	-	- 1,0
Хлосоль	294,0	124,0	23,0	-	-	105,0	-	-	42,0	-	-	-	18,0
Дисоль	252,0	126,0	-	-	-	103,0	-	-	23,0	-	-	-	-1,0

Кристаллоидные растворы

Раствор	0CM0-	Na+	K+	Ca2+	Mg2+	CI-	HCO3-	Лактат	ацетат	малат	глю-	глю-	Избыток
т аствор					_ ~				ммоль/л				оснований
	лярность	ммоль	ммоль	ммоль	ММОПЬ	ммоль	ммоль	ммоль	MINIOLIBITE	ммоль	конат	коза	
	ммолы∕л	/л	/n	/п	/л	/in	/л	/n		/n	ММОЛЬ	r/л	BE pot
											Л		ммоль/л
Стерофун-	304,0	140,0	4,0	2,5	1,0	127,0	-	-	24,0	5,0	-	-	-
дин изото-													
ниический													
Стерофун-	576,0	140,0	4,0	2,5	1,0	141,0	_	-	-	10,0	-	50,0	-
дин Г-5	,	.,.		_,.									
Нормофун-	530,0	100,0	18,0	2,0	3,0	90,0	-	-	38,0	-	-	50,0	-
дин Г-5		·	·	·					·			·	
Плазмалит -	296,0	140,0	5,0	-	3,0	98,0	-	-	27,0	-	23,0	-	26,0
148					-								·
Ионостерил	291,0	137,0	4,0	1,7	1,2	110,0	-	-	36,8	-	-	-	13,0
S.NaCl 0,9%	309,0	154,0	-	-	-	154,0	-	-		-	-	-	-
Рингер	309,0	147,0	4,0	2,2	1,0	156,0	-	-	-	-	-	-	-24,0
Рингер	276,0	130,0	5,0	1,0	1,0	112,0	-	27,0	-	-	-	-	3,0
лактат													
Ацесоль	244,0	109,0	13,0	-	-	99,0	-	-	23,0	-	-	-	- 1,0
Хлосоль	294,0	124,0	23,0	-	-	105,0		-	42,0	-	-	-	18,0
Дисоль	252,0	126,0		-	-	103,0	-	-	23,0		-	-	-1,0

Лактат

- В течение десятилетий один из самых популярных
 - Рингер-лактат (раствор Хартмана)
- · Сегодня много аргументов «против»:
 - 1 моль лактата 3 моля O_2 ;
 - Лактат маркер;
 - Печеночная недостаточность!

<u>J Trauma Acute Care Surg.</u> 2015 Nov;79(5):732-40. doi: 10.1097/TA.000000000000833.

Impact of common crystalloid solutions on resuscitation markers following Class I hemorrhage: A randomized control trial.

Ross SW¹, Christmas AB, Fischer PE, Holway H, Walters AL, Seymour R, Gibbs MA, Heniford BT, Sing RF.

- РКИ (доноры):
 - В/в 2 л 0,9% NaCl & Рингер-лактат.
- Контроль:
 - Лактат и ВЕ.
- Результаты:
 - Рингер-лактат Луровень лактата.
 - 0,9% NaCl >BE.

Кристаллоиды при травмах??!!

Jaktat

Метаболизм ацетата

- 1 моль ацетата 2 моля О₂
- Необходимые ферменты во всех тканях.

Knowles SE, Jarrett IG, Filsell OH et al. Biochem J 1974 Kuze S, Ito Y, Miyahara T. Acta Medica Biologica 1986

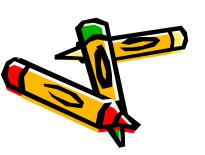
• Значительно быстрее лактата.

Arieff AI. Chest 1999

Hamada T, Yamamoto M, Nakamura K et al. Masui 1997

Kirkendol PL, Starrs J, Gonzalez FM. Trans Am Soc Artif Intern Organs 1980

Метаболизм ацетата



• Не зависит от возраста

Skutches CL, Holroyde CP, Myers RN et al. J Clin Invest 1979

- Не меняется при диабете
- Не изменяет концентрацию глюкозы

Akanji AO, Bruce MA, Frayn KN. Eur J Clin Nutr 1989 Akanji AO, Hockaday TDR. Am J Clin Nutr 1990 Harper PV, Neal WB, Hlavacek GR. Metabolism 1953

AUSTAT

Метаболизм малата

- Менее освещен в литературе
- 1 моль малата = 1,5 моля О₂

= 2 моля HCO₃-

Zander R. Infusionsther Transfusionsmed 1993

• Ощелачивание значительно медленнее, чем у ацетата (совместное использование - ОК)

Глюконат

· Ощелачивающее действие ≈ нулевое

Kirkendol PL, Starrs J, Gonzalez FM. Trans Am Soc Artif Intern Organs 1980

Naylor JM, Forsyth GW. Can J Vet Res 1986

• Смысл клинического использования?

October 27, 2015, Vol 314, No. 16 >

Effect of a Buffered Crystalloid Solution vs Saline on Acute Kidney Injury Among Patients in the Intensive Care Unit The SPLIT Randomized Clinical Trial

Paul Young, FCICM^{1,2}; Michael Bailey, PhD³; Richard Beasley, DSc¹; Seton Henderson, FCICM^{1,4}; Diane Mackle, MN¹; Colin McArthur, FCICM^{1,3,5}; Shay McGuinness, FANZCA^{1,3,6}; Jan Mehrtens, RN⁴; John Myburgh, PhD^{7,8}; Alex Psirides, FCICM²; Sumeet Reddy, MBChB¹; Rinaldo Bellomo, FCICM^{3,9}; for the SPLIT Investigators and the ANZICS CTG

Плазмалит & NaCl 0,9%

В ОРИТ буферированные растворы не снижают риск ОПН по сравнению с NaCl 0,9%

GUIDELINES

Intravascular volume therapy in adults

Guidelines from the Association of the Scientific Medical Societies in Germany

Gernot Marx, Achim W. Schindler, Christoph Mosch, Joerg Albers, Michael Bauer, Irmela Gnass, Carsten Hobohm, Uwe Janssens, Stefan Kluge, Peter Kranke, Tobias Maurer, Waltraut Merz, Edmund Neugebauer, Michael Quintel, Norbert Senninger, Hans-Joachim Trampisch, Christian Waydhas, Rene Wildenauer, Kai Zacharowski and Michaela Eikermann

Recommendation 6a-3 6b-3

GoR

• Сбаланс. растворы, содержащие ацетат или малат вместо лактата, могут использоваться периоперационно/ОРИТ

Гипотонические растворы

Раствор	OCMO-	Na+	K+	Ca2+	Mg2+	CI-	HCO3-	Лактат	ацетат	малат	глю-	глю-	Избыток
	лярность	ммоль	ммоль/п	ммоль	конат	коза	оснований						
	ммоль/л	/л	/n	ſπ	/п	/in	/п	/n		/n	ммоль	r/n	BE pot
											/n		ммоль/л
Стерофун-	304,0	140,0	4,0	2,5	1,0	127,0	-	-	24,0	5,0	-	-	-
дин изото-													
ниический													
Стерофун-	576,0	140,0	4,0	2,5	1,0	141,0	-	-	-	10,0	-	50,0	-
дин Г-5													
Нормофун-	530,0	100,0	18,0	2,0	3,0	90,0	-	-	38,0	-	-	50,0	-
дин Г-5													
Плазмалит -	296,0	140,0	5,0	-	3,0	98,0	-	-	27,0	-	23,0	-	26,0
148													
Ионостерил	291,0	137,0	4,0	1,7	1,2	110,0	-	-	36,8	-		-	13,0
S.NaCl 0,9%	309,0	154,0	-	-	-	154,0	-	-	-	-	-	-	-
Рингер	309,0	147,0	4,0	2,2	1,0	156,0	-	-	-	-	-	-	-24,0
Рингер	276,0	130,0	5,0	1,0	1,0	112,0	-	27,0	-	-	-	-	3,0
лактат													
Ацесоль	244,0	109,0	13,0	-	-	99,0	-	-	23,0	-	-	-	- 1,0
Хлосоль	294,0	124,0	23,0	-	-	105,0	-	-	42,0	-	-	-	18,0
Дисоль	252,0	126,0	-	-		103,0	-	-	23,0		-	-	-1,0

Гипотонические растворы гипонатриемия

• США - 15000 случаев детской смертности в год

Arieff AI. Paediatric Anaesthesia 1998

Детям - сбалансированные изотонические p-ры!

Hennes H-J: Schadel-Hirn-Trauma. In: Neuro-anasthesie (J-P Jantzen, W Loffler, Eds.)
Thieme, Stuttgart (2001)

Plaß M, Hahn O, Dietrich HJ: Crystalloids. In: Volumenersatztherapie (J. Boldt, Ed.),

Thieme, Stuttgart (2001)

Гипотонические растворы гипонатриемия

- У новорожденных легко развивается отек мозга:
 - 25% веса тела масса мозга.
- В нейротравматологии избегать.

Hennes H-J: Schadel-Hirn-Trauma. In: Neuro-anasthesie (J-P Jantzen, W Loffler, Eds.)

Thieme, Stuttgart, 2001

GUIDELINES

Intravascular volume therapy in adults

Guidelines from the Association of the Scientific Medical Societies in Germany

Gernot Marx, Achim W. Schindler, Christoph Mosch, Joerg Albers, Michael Bauer, Irmela Gnass, Carsten Hobohm, Uwe Janssens, Stefan Kluge, Peter Kranke, Tobias Maurer, Waltraut Merz, Edmund Neugebauer, Michael Quintel, Norbert Senninger, Hans-Joachim Trampisch, Christian Waydhas, Rene Wildenauer, Kai Zacharowski and Michaela Eikermann

Recommendation 5b-1

GoR

• Гипотонические среды не использовать в ОРИТ у больных с тяжелой ЧМТ

COCTAB:

немного конкретики

		Human Plasma	Isotonic Saline
Kations	Sodium	142	154
[mval/l]	Potassium	4,5	
	Magnesium	2,5	
	Calcium	5	
positive	charges (sum)	154	
Anions	Chloride	105	 154
[mval/l]	Phosphate	5	
	Proteinate	19	
	Bicarbonate	24	
	Lactate	1	
	Acetate		Koppi
	Malat		
negative	charges (sum)	154	_

GUIDELINES

Intravascular volume therapy in adults

Guidelines from the Association of the Scientific Medical Societies in Germany

Gernot Marx, Achim W. Schindler, Christoph Mosch, Joerg Albers, Michael Bauer, Irmela Gnass, Carsten Hobohm, Uwe Janssens, Stefan Kluge, Peter Kranke, Tobias Maurer, Waltraut Merz, Edmund Neugebauer, Michael Quintel, Norbert Senninger, Hans-Joachim Trampisch, Christian Waydhas, Rene Wildenauer, Kai Zacharowski and Michaela Eikermann

Recommendation 6b-1

GoR

 0,9% NaCl не использовать в качестве волемического препарата в критической медицине

		Human Plasm	а
Kations	Sodium	142	1232
[mval/l]	Potassium	4,5	
	Magnesium	2,5	
	Calcium	5	
positive	charges (sum)	154	
Anions	Chloride	105	1232
[mval/l]	Phosphate	5	
	Proteinate	19	
	Bicarbonate	24	
	Lactate	1	
	Acetate		
	Malat		
negative	charges (sum)	154	Осмолярность 246 ⁴

		Human Plasma	Ringers Lactate
Kations	Sodium	142	130
[mval/l]	Potassium	4,5	5,5
	Magnesium	2,5	
	Calcium	5	2,5
positive	charges (sum)	154	138
Anions	Chloride	105	111
[mval/l]	Phosphate	5	
	Proteinate	19	
	Bicarbonate	24	
	Lactate	1	27
	Acetate		
	Malat		
negative charges (sum)		154	138

		Human Plasma	трисоль
Kations	Sodium	142	133
[mval/l]	Potassium	4,5	14
	Magnesium	2,5	
	Calcium	5	
positive	charges (sum)	154	
Anions	Chloride	105	99
[mval/l]	Phosphate	5	
	Proteinate	19	
	Bicarbonate	24	48 (pH 8,4
	Lactate	1	
	Acetate		
	Malat		
negative charges (sum)		154	Осм-сть 294

		Human Plasma	Ацесоль
Kations	Sodium	142	110
[mval/l]	Potassium	4,5	13
	Magnesium	2,5	
	Calcium	5	
positive	charges (sum)	154	
Anions	Chloride	105	99
[mval/l]	Phosphate	5	
	Proteinate	19	
	Bicarbonate	24	
	Lactate	1	0.4
	Acetate		24
	Malat		
negative charges (sum)		154	Осм-сть 246

<u> </u>		Human Plasma
Kations	Sodium	142
[mval/l]	Potassium	4,5
	Magnesium	2,5
	Calcium	5
positive	charges (sum)	154
Anions	Chloride	105
[mval/l]	Phosphate	5
	Proteinate	19
	Bicarbonate	24
	Lactate	1
	Acetate	
0	Malat	· .
negative	charges (sum)	154

Концентрация электролитов: Натрий 100,0 ммоль/л Калий 18,0 ммоль/л Кальций 2,0 ммоль/л Магний 3,0 ммоль/л Хлорид 90,0 ммоль/л Ацетат 38,0 ммоль/л

Физико-химические характеристики

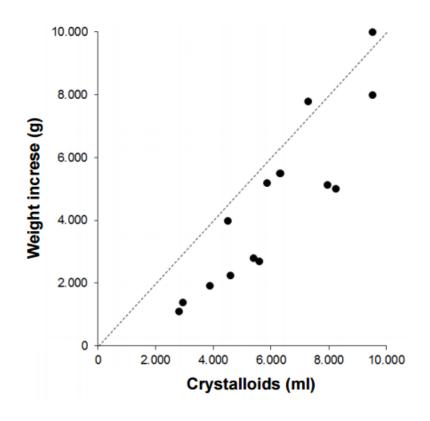
Теоретическая осмолярность 530 мОсм/л рН 4,5-7,5 Калорийность 835 (200) кДж/л (кКал/л)

Базисный раствор

			_
	1	Human Plasma	_
Kations	Sodium	142	145,0 ммоль/л
[mval/l]	Potassium	4,5	4,0 ммоль/л
	Magnesium	2,5	1,0 ммоль/л
	Calcium	5	2,5 ммоль/л
positive	charges (sum)	154	152,5
Anions	Chloride	105	127,0 ммоль/л
[mval/l]	Phosphate	5	
	Proteinate	19	
	Bicarbonate	24	
	Lactate	1	
	Acetate		24,0 ммоль/л
	Malat		5,0 ммоль/л
negative	charges (sum)	154	156

RESEARCH Open Access

Duration of hemodynamic effects of crystalloids in patients with circulatory shock after initial resuscitation


Thieme Souza Oliveira Nunes, Renata Teixeira Ladeira, Antônio Tonete Bafi, Luciano Cesar Pontes de Azevedo, Flavia Ribeiro Machado and Flávio Geraldo Rezende Freitas*

• Гемодинамические эффекты инфузии кристаллоидов не продолжаются >60 мин даже у «респондеров».

Кристаллоиды

Больше объемы - больше отеки

Dellinger R.P., Levy M.M., Carlet J.M. et al., 2008

Chappell D et al., Anesthesiology 2008; 109: 723-40

Br J Anaesth. 2015 Nov;115(5):736-42. doi: 10.1093/bja/aev346.

Effects of acute plasma volume expansion on renal perfusion, filtration, and oxygenation after cardiac surgery: a randomized study on crystalloid vs colloid.

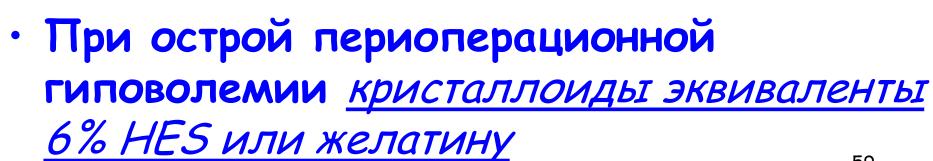
Skytte Larsson J¹, Bragadottir G¹, Krumbholz V¹, Redfors B¹, Sellgren J¹, Ricksten SE².

Рингер-ацетат 20 мл/кг (n=15) & Венофундин 10 мл/кг (n=15).

 • Л СКФ в группе кристаллоидов связано с ухудшением почечной оксигенации, не отмечаемой в группе коллоидов.

GUIDELINES

Intravascular volume therapy in adults


Guidelines from the Association of the Scientific Medical Societies in Germany

Gernot Marx, Achim W. Schindler, Christoph Mosch, Joerg Albers, Michael Bauer, Irmela Gnass, Carsten Hobohm, Uwe Janssens, Stefan Kluge, Peter Kranke, Tobias Maurer, Waltraut Merz, Edmund Neugebauer, Michael Quintel, Norbert Senninger, Hans-Joachim Trampisch, Christian Waydhas, Rene Wildenauer, Kai Zacharowski and Michaela Eikermann

Recommendation 4a-1

GoR

ПЛОХОЙ / ХОРОШИЙ РАСТВОР?

мама или папа?

Итак...

Спасибо