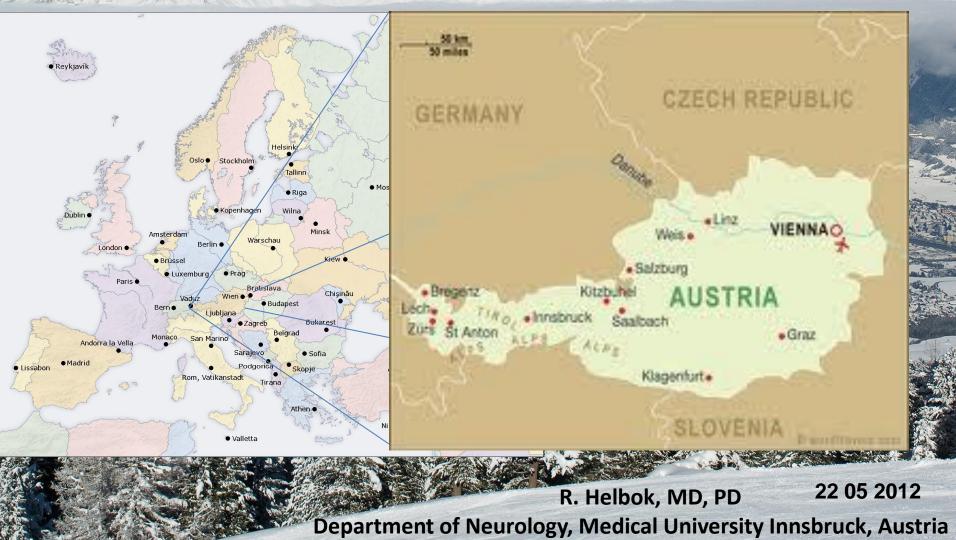
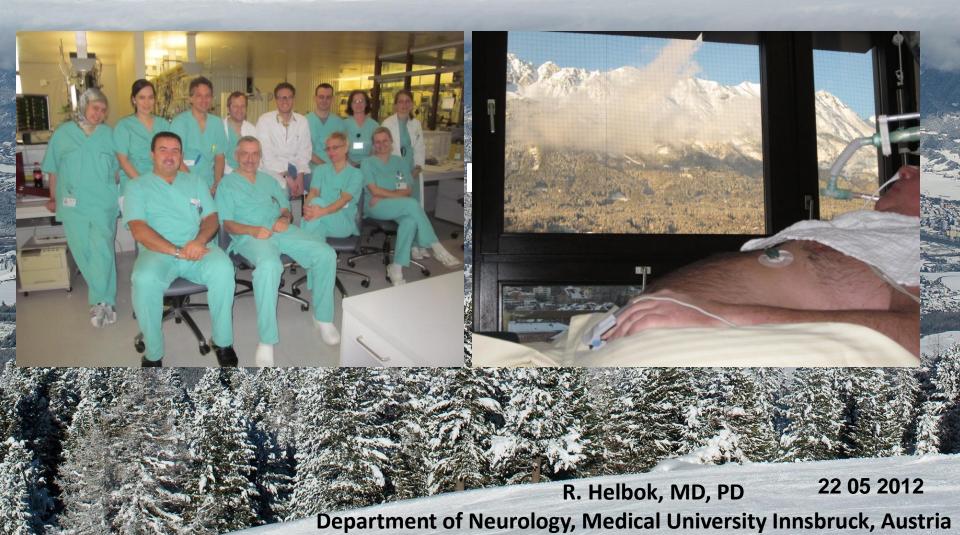
Methods and practical aspects

of hypothermia in the Neuro-ICU

R. Helbok, MD, PD 22 05 2012 Department of Neurology, Medical University Innsbruck, Austria



\circ None



Department of Neurology Innsbruck Medical University, Austria

Methods and practical aspects

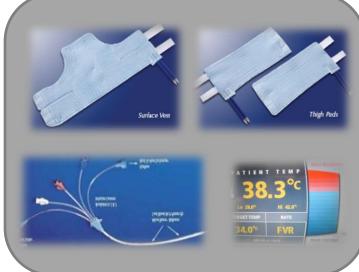
Methods and practical aspects

Outline

> How to achieve hypothermia

> How to maintain hypothermia

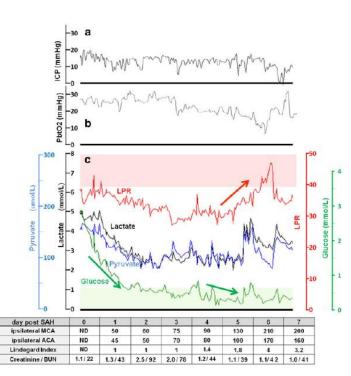
<image>


> What-s important for the clinician

> How to achieve hypothermia

> How to maintain hypothermia

> What-s important for the clinician



Department of Neurology Innsbruck Medical University, Austria

> How to achieve hypothermia

> How to maintain hypothermia

> What-s important for the clinician

Therapeutic hypothermia

• Evidence (RCT)

cardiac arrest

ullet

Department of Neurology Innsbruck Medical University, Austria

Small trials

How to cool?

- Ice bags
- Fans
- Intravenous Cooling

Mechanical Cooling

• Endovascular Cooling!

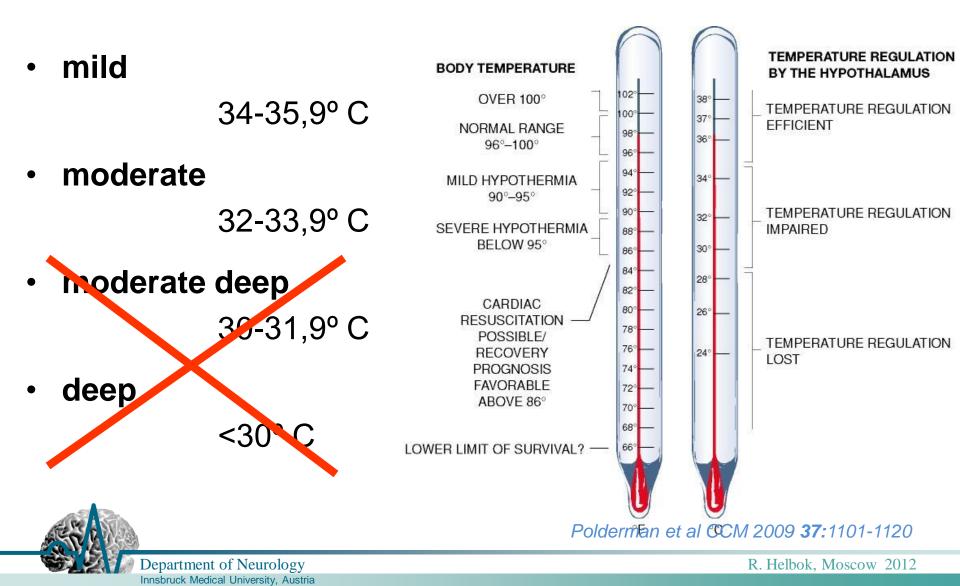
Innsbruck Medical University, Austria

	Pros	Cons
Ice bags	inexpensive widely available	messy, difficult to control temp
Intravenous Fluids	inexpensive widely available	need to determine way to keep fluids cold

	Pros	Cons
Surface cooling	fair control of patient temp easy to use	variety of systems/costs not easily transportable
Endovascular cooling	reliable control fast no risk of skin lesions	expensive large invasive line infection risk

Keep Track of Temperature

- Bladder
- Rectal
- PA Catheter
- Esophageal
- Tympanic
- Axilla


Continuous **monitoring** (or q15min) during induction until stabilized at goal temperature 32-34°C

Hypothermia

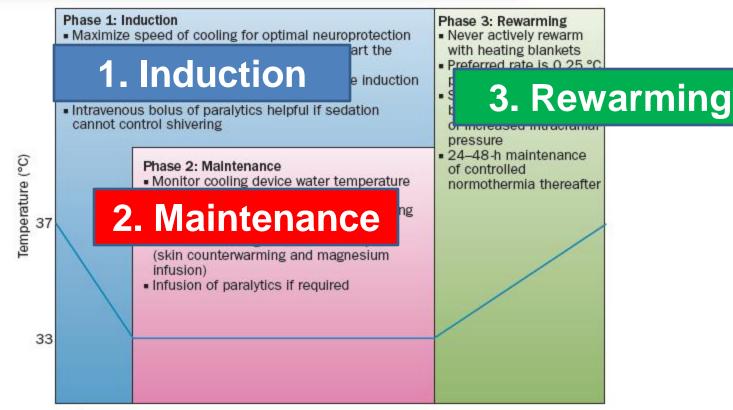
Success with induced hypothermia requires

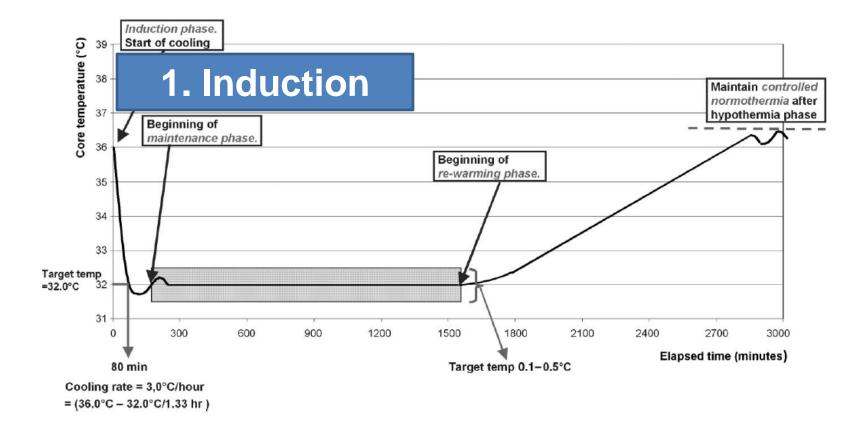
- Understand processes at the cellular level in the minutes to hours following an initial injury
 - postresuscitation disease
 - reperfusion injury
 - secondary brain injury
- Understand physiological effects pathophysiological mechanisms of hypothermia

Apply adequate monitoring in intensive care units

Hypothermia for acute brain injury —mechanisms and practical aspects

H. Alex Choi, Neeraj Badjatia and Stephan A. Mayer



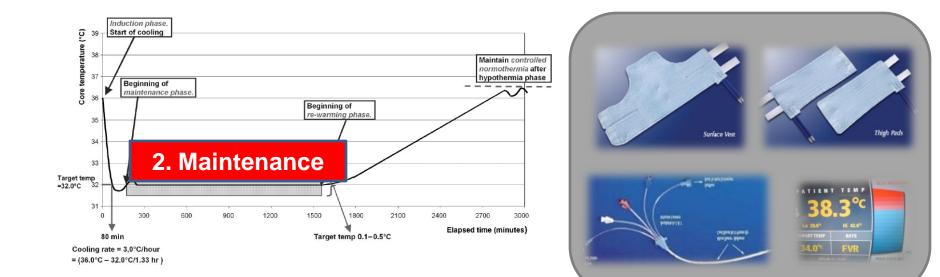

Figure 1 | Key management points during the three phases of therapeutic hypothermia.

Department of Neurology Innsbruck Medical University, Austria Choi et al, Nat Rev Neurol. 2012 28;8:214-22

Mechanisms of action, physiological effects, and complications of hypothermia

Department of Neurology Innsbruck Medical University, Austria Polderman et al CCM 2009 37:1101-1120

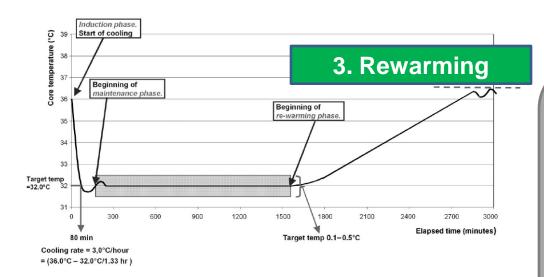
- ➢ Goal: Reach target within 2 hours → RAPID
 - ✓ Intravenous cold saline (kept at 1-4°C (30cc/kg)
 - peripheral or femoral line
 - decrease by 2°C after 1h-infusion
 - ✓ Ice bags
 - axilla, groin and sides of neck
 - ✓ Expose the skin
 - ✓ Water and alcohol sprays
- Surface/intravscular cooling devices


✓ Avoid temperature overshoot !

Department of Neurology Innsbruck Medical University, Austria Polderman et al CCM 2005; 33:2744–2751; Choi et al, Nat Rev Neurol. 2012 28;8:214-22

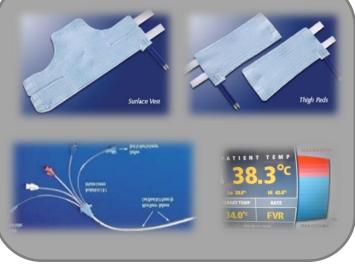
2. Maintenance

➢ only minor fluctuations, 0.2°C


Advanced cooling technologies

Polderman et al CCM 2005; 33:2744–2751; Polderman et al CCM 2009 **37:**1101-1120 ; Choi et al, Nat Rev Neurol. 2012 28;8:214-22

Department of Neurology Innsbruck Medical University, Austria



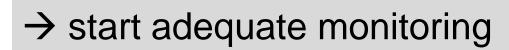
- should be contolled
 - Advanced cooling technologies
- ➤ go slow!
 - ≻0.25°C/hr for postcardiac arrest
 - ≻Severe brain injury: 0.05-0.1°C/hr

Polderman et al CCM 2005; 33:2744–2751; Polderman et al CCM 2009 **37:**1101-1120 ; Choi et al, Nat Rev Neurol. 2012 28;8:214-22

Department of Neurology Innsbruck Medical University, Austria

1. Induction

Risk for


✓ hypovolemia

· √ shivering

Polderman et al CCM 2005; 33:2744–2751; Choi et al, Nat Rev Neurol. 2012 28;8:214-22

Renal changes Temp < 35°C

- Tubular dysfunction
- Diuresis

> Hypovolemia, Hypotension

- Intracellular shifts
- Electrolyte loss
 - Mg, K, Phosphate

Department of Neurology Innsbruck Medical University, Austria Polderman, KH et al, 2001, JNS, 94, 697–705 Polderman, KH, ICM 2004,30, 757–769 Choi et al, Nat Rev Neurol. 2012 28;8:214-22

- Aggressive replacement (Mg, K) with goal high normal ranges
- Multiple boluses / supplements to infusions
- Careful monitoring, especially during re-warming

Department of Neurology Innsbruck Medical University, Austria Polderman, KH et al, 2001, JNS, 94, 697–705 Polderman, KH, ICM 2004,30, 757–769 Choi et al, Nat Rev Neurol. 2012 28;8:214-22

- Metabolism \downarrow (cerebral \downarrow by 6-10%/1°C)
- Oxygen consumption ↓

TH: Metabolism

- Insulin resistance → Hyperglycemia
 - Secondary to decreased insulin sensitivity and secretion
 - Rewarming: insulin sensitivity increases \rightarrow hypoglycemia!
 - Goal is normoglycemia
 - Resultant higher insulin rates (lower K+)

Department of Neurology Innsbruck Medical University, Austria Polderman, KH, ICM 2004,30, 757–769

1. Induction

Risk for

✓ hypovolemia

✓ electrolyte disorders

hyperglycemia

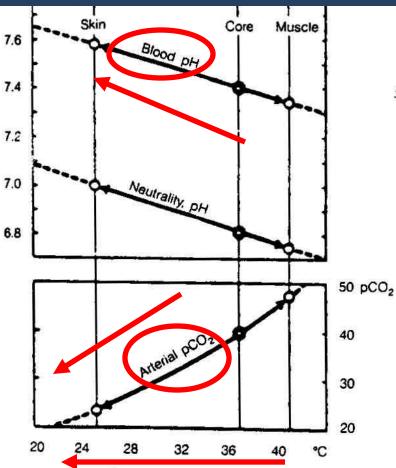
Polderman et al CCM 2005; 33:2744–2751; Choi et al, Nat Rev Neurol. 2012 28;8:214-22

Department of Neurology Innsbruck Medical University, Austria

- Man, 45 y
- Severe TBI, ICP crisis → start hypothermia (cold saline, intravascular), maintain at 33 °C
- ICP~~18mmHg
- Acid-base status?
- Technician asks you if he should warm the blood before analysis...

A) Don't warm it : 33°C

- B) Warm it to 37°C
- C) Both and I'll pick the best one.



ABG ($37^{\circ}C$)temp-corrected ($33^{\circ}C$)• pH = 7.45pH = 7.50• pCO₂ = 35pCO₂ = 27• pO₂ = 90pO₂ = 70

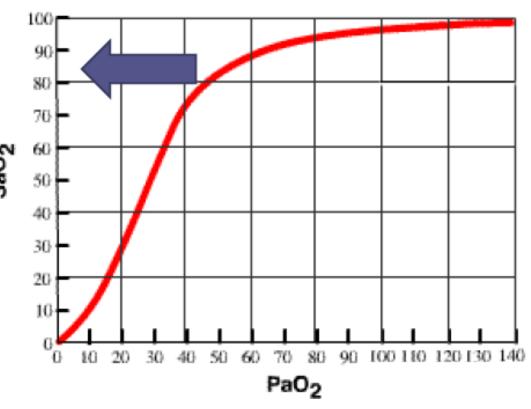
- Everything's perfect, I don't touch the ventilator ?
- Will you try to $\downarrow RR$ or $\downarrow V_T$ to $\uparrow pCO2$?

HT and blood gas (ABG)

FIGURE 4. pH-temperature relation of blood in various capillary beds of a person exercising in a cold environment. CO_2 remains constant. All of these measurements are pH of 7.40 and pCO_2 of 40 mm Hg in the blood gas machine at 37 C. (Reprinted with permission from Rahn.¹¹)

Department of Neurology Innsbruck Medical University, Austria R. Helbok, Moscow 2012

HE



- Solubility of gases:
 - temperature dependent

- Left shift due to cooling ⁶/₈
 - Dec. O2 consumption
- ABGs warmed to 37C:
 - Solubility of CO2 increases higher PCO2/lower pH.....

OxyHemoglobin Dissociation Curve

Polderman, KH et al, 2001, JNS, 94, 697–705 Polderman, KH, ICM 2004,30, 757–769

R. Helbok, Moscow 2012

ABG (37°C) temp-corrected (33 $^{\circ}$ C) • pH = 7.45 pH = 7.50• pCO₂ = 35 $pCO_{2} = 27$ • $pO_2 = 100$ $pO_2 = 80$ pO₂ and pCO₂ overestimated, pH underestimated **Hyperventilation** Hypoventilation cerebral

vasoconstriction

cerebral vasodilation

• ICP

We use temperature corrected ABG values

- \rightarrow monitor ICP, check TCD
- \rightarrow \downarrow RR or \downarrow VT to \uparrow pCO2
- target pCO2 values 32 to 36 mm Hg \rightarrow

RISK

1. Induction

Risk for

✓ hypovolemia

✓ electrolyte disorders

Market Apperglycemia

 \checkmark CO2 production \downarrow

✓ shivering

Polderman et al CCM 2005; 33:2744–2751; Choi et al, Nat Rev Neurol. 2012 28;8:214-22

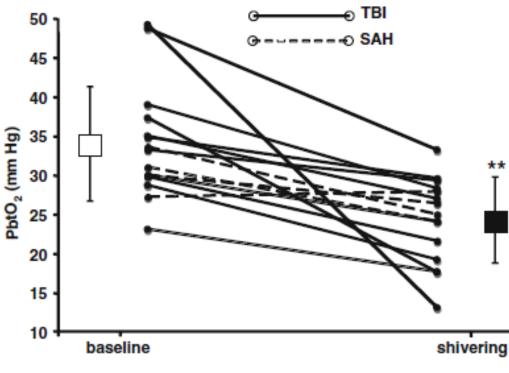
Department of Neurology Innsbruck Medical University, Austria

Physiological attempts to increase temperature

- Temperature 30-35°C
 - Shivering

TH - shivering

- Peripheral vasoconstriction
- Increased muscle activity
- Increased oxygen consumption (40-100%) ____
- Increased metabolism

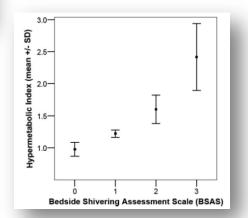


Physiologic changes of induced hypothermia

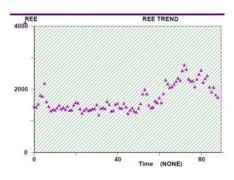
Effect of Shivering on Brain Tissue Oxygenation During Induced Normothermia in Patients With Severe Brain Injury

Mauro Oddo • Suzanne Frangos • Eileen Maloney-Wilensky • W. Andrew Kofke • Peter D. Le Roux • Joshua M. Levine

Neurocrit Care (2010) 12:10-16



Shivering – assess and treat!


Hypothermia for acute brain injury —mechanisms and practical aspects

H. Alex Choi, Neeraj Badjatia and Stephan A. Mayer

Badjatia et al, Stroke. 2008;39:3242-3247

Helbok et al, CCM, under review

Table 2 The Columbia Anti-Shivering Protocol					
Step	Level of sedation	Intervention for shivering	Dosage		
0	None	Acetaminophen Busiprone Magnesium sulphate Skin counterwarming	650–1000 mg every 4–6 h 30 mg every 8 h 0.5–1 mg/h i.v. (goal: 3–4 mg/dl) Maximum temperature 43 ℃		
1	Mild	Dexmedetomidine	0.2–1.5 μg/kg/h		
2	Moderate	Opioids	Fentanyl, starting dose: 25µg/h Meperidine 50–100 mg i.m. or i.v.		
3	Deep	Propofol	50–75µg/kg/min		
4	Neuromuscular blockade	Vecuronium	0.1 mg/kg i.v.		

Abbreviations: i.v., intravenously; i.m., intramuscularly. Adapted from Choi, H. A. et al. Prevention of shivering during therapeutic temperature modulation: the Columbia Anti-Shivering Protocol. *Neurocrit. Care* 14, 389–394 (2011).

Badjatia et al, Stroke. 2008;39:3242-3247

Choi et al, Nat Rev Neurol. 2012 28;8:214-22

1. Induction

Risk for

- ✓ hypovolemia
- ✓ electrolyte disorders
- hyperglycemia
- ✓ CO2 production ↓
- A CONTRACTOR
- ✓ shivering

➤ treat!

\rightarrow start adequate monitoring

Polderman et al CCM 2005; 33:2744–2751; Choi et al, Nat Rev Neurol. 2012 28;8:214-22

Department of Neurology Innsbruck Medical University, Austria

- ➢ fluid management
- electrolyte administration
- ➤ insulin
- adjust ventilator settings

1. Induction

2. Maintenance

Risk for

- ✓ hypovolemia
- ✓ electrolyte disorders

🔨 🗸 hyperglycemia

 \checkmark CO2 production \downarrow

✓ shivering



Polderman et al CCM 2005; 33:2744–2751; Choi et al, Nat Rev Neurol. 2012 28;8:214-22

Department of Neurology Innsbruck Medical University, Austria

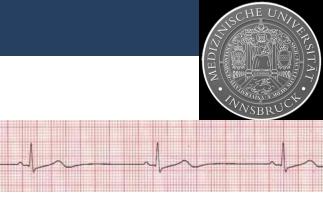
≤35°C: Negative chronotropic effects

Polderman, K. H, ICM 2004,30, 757–769 ; Bergman, R. et al. Eur. J. Anaesthesiol.2010.27, 383–38

Department of Neurology Innsbruck Medical University, Austria

≤35°C: Negative chronotropic effects

≤32°C Prolonged PR, QT intervals


- \geq 28°C Atrial fibrillation
- Ventricular arrhythmias at temps <28-30° C)</p>

Polderman, K. H, ICM 2004,30, 757–769 ; Bergman, R. et al. Eur. J. Anaesthesiol.2010.27, 383–38

Department of Neurology Innsbruck Medical University, Austria

≤35°C: Negative chronotropic effects

\leq 32°C Prolonged PR, QT intervals $\geq 28^{\circ}$ C Atrial fibrillation

Ventricular arrhythmias at temps <28-30° C)</p>

≥33°C: generally well tolerated

- Bradycardia (CO) increased myocardial contractility
- BP (cold diuresis, endocrine)

33°C safe lower limit in critically ill pts

Polderman, K. H, ICM 2004,30, 757–769 ; Bergman, R. et al. Eur. J. Anaesthesiol.2010.27, 383–38

Department of Neurology Innsbruck Medical University, Austria

1. Induction

2. Maintenance

Risk for

- ✓ hypovolemia
- ✓ electrolyte disorders

🔨 🗸 hyperglycemia

 \checkmark CO2 production \downarrow

✓ shivering

➢ infections

> GI

Polderman et al CCM 2005; 33:2744–2751; Choi et al, Nat Rev Neurol. 2012 28;8:214-22

Department of Neurology Innsbruck Medical University, Austria

TH: Hematological abnormalties

- SCHE UNILLE INTERNET
- Platelet dysfunction and thrombocytopenia (33-35°C) immediately reversed with restoration of temperature

Spiel AO, eta I Resuscitation. 2009;80:762-5

• **Coagulation** tests prolonged (PTT, ROTEM)

Poldermann KH et al, Lancet 2008;371:1955-69

- The risk bleeding is very low
- No significant bleeding complications seen in trials

Hemmen TM et al, Stroke 2010 ;41:2265-70

 Risks of bleeding does not prevent treatment
 Concomitant use of thrombolytics, anticoagulation, antiplatelets acceptable

CAVE: combination with acidosis

Hemmen TM et al, Stroke 2010 ;41:2265-70

Department of Neurology Innsbruck Medical University, Austria

1. Induction

2. Maintenance

Risk for

- ✓ hypovolemia
- ✓ electrolyte disorders

🕺 🗸 hyperglycemia

 \checkmark CO2 production \downarrow

✓ shivering

Polderman et al CCM 2005; 33:2744–2751; Choi et al, Nat Rev Neurol. 2012 28;8:214-22

Department of Neurology Innsbruck Medical University, Austria

TH - infections

< 35°C Immune suppression

Impaired neutrophil and macrophage function Inhib release of pro-inflammatory cytokines

Insulin resistance and hyperglycemia

< 33°C WBC, impaired leukocyte function < 33°C

Increased risk of infections

Kimura A at al , 2002 CCM30:1499–1502; Aibiki M et al, 1999, J Neurotraum 16:225–232; Salman H et al, 2000, Acta Physiol Scand 168:431–436; Polderman, K. H, ICM 2004,30, 757–769

Department of Neurology Innsbruck Medical University, Austria

TH: Infections

Infectious complications in out-of-hospital cardiac arrest patients in the therapeutic hypothermia era*

Nicolas Mongardon, MD; (Crit Care Med 2011; 39:1359-1364)

Table 1. Baseline admission characteristics and outcome of patients admitted after cardiac arrest, classified according to the use of therapeutic hypothermia

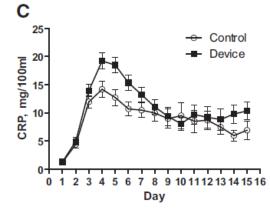
	Therapeutic Hypothermia (n = 334)	No Therapeutic Hypothermia (n = 87)	р
Age, yr	60 (50-73)	60 (49-71)	.86
MacCabe score			
0	288	69	.2
1-2	47	17	
Male, n (%)	240 (72)	71 (82)	.08
Simplified Acute Physiology Score II	64 (56-75)	63 (53-77)	.41
No-flow (min)	5 (0-10)	3(0-10)	.07
Low-flow (min)	15 (8-25)	10.5(5-26)	.17
Shockable rhythm, n (%)	160 (48%)	40 (46%)	.75
Cardiac etiology, n (%)	209 (63%)	38 (44%)	$.002^{a}$
Postresuscitation shock, n (%)	180 (54%)	42 (49%)	.35
Infectious complication, n (%)	230 (69%)	51 (59%)	.03 ^a
Cerebral performance category 1–2, n (%)	120 (36%)	29 (33%)	66
Intensive care unit mortality, n (%)	208 (62%)	58 (67%)	.45

Table 2. Source of infections and causative agents in successfully resuscitated cardiac and

	Early-Onset Pneumonia	Late-Onset Pneumonia	Noodstream Infection	Cath Rel Infe
Gram-positive bacteria				
Staphylococcus aureus	42	8	6	
Streptococcus pneumoniae	26	1	1	
Streptococcus species	3		3	
Staphylococcus epidermidis			3	
Enterococcus faecalis			1	
Clostridium difficile				
Corynebacterium jeikeium			1	
Gram-negative bacteria				
Escherichia coli	28	10	8	
Haemophilus influenzae and parainfluenzae	36	2		
Klebsiella pneumoniae	13	3	1	
Pseudomonas aeruginosa	5	11	2	
Enterobacter cloacae	4	4	2	
Proteus mirabilis	4 7	2	1	
Moraxella catarrhalis	5			
Acinetobacter baumannii		1		
Stenotrophomonas maltophilia		1		
Other enterobacteriaceae species	19	7	5	
Others				
Candida albicans			1	
Polymorph flora	24			
No growth	52			
Total	264	50	35	1

Infections and Normothermia

Prophylactic, Endovascularly Based, Long-Term Normothermia in ICU Patients With Severe Cerebrovascular Disease Broess


Broessner (Stroke. 2009;40:e657-e665.)

• N = 102

Influence of Prophylactic, Endovascularly Based Normothermia on Inflammation in Patients With Severe Cerebrovascular Disease

Broessner, (Stroke. 2010;41:2969-2972.)

	Through Neuro-ICU Discharge						
Infection Type	CoolGard n (%)	Control n (%)	P Value				
Overall	48 (94)	43 (84)	0.20				
Infectious	48 (94)	40 (78)	0.04				
Noninfectious	19 <mark>(</mark> 37)	20 (39)	1.00				

Baseline Variable	CoolGard (n=51)	Control (n=51)	Р
ongitudinal data of inflammatory parameters			
C-reactive protein, mg/100	10.8±6.0	8.6±5.6	0.03
mL (mean±SD)			
WBCs, G cells/L (mean \pm SD)	10.3±3.3	10.5 ± 2.8	0.84
IL-10, pg/mL (mean±SD)	11.3±17.2	10.9 ± 16.5	0.72
IL-6, pg/mL (mean±SD)	95.2±82.2	72.7±83.8	0.03
Procalcitonin, μ g/L (mean \pm SD)	0.4±1.1	0.7±1.4	0.60

high vigilance of infections in TH- patients is needed

✓ Microbiological surveillance

✓ blood, urine, respiratory specimen

- ✓ Radiological pneumonia surveillance
- ✓ Check lab parameters
 ✓ CRP, PCT, leukocytes
- ✓ Check catheter insertion sites

✓ timely catheter replacement

 \checkmark Avoid hyper and hypoglycemia

Usually occur < 35°C

- Impaired bowel function
- Impaired intestinal motility
- Potential for ileus
- Mild pancreatitis (occurs frequently!)
- Liver enzymes 1

Decreased drug metabolism by the liver

- vasoactive drugs
- opiates
- sedatives
- barbiturates
- neuromuscular blocking
- > antiepileptic drugs
- some beta-blockers

Most dangerous phase of induced hypothermia

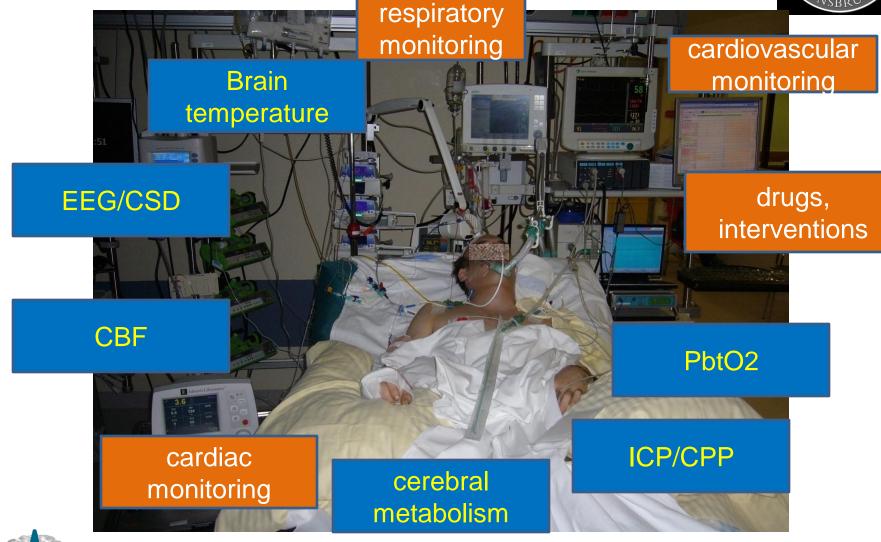
Concerns/Precautions

- Rebound ICP
- Vasodilatation
 - Dramatic changes in hemodynamic profile
- SIRS type syndrome
 - increased catecholamines, O₂ consumption
- Rebound electrolytes (hyperkalemia)
- Cardiac arrhythmias

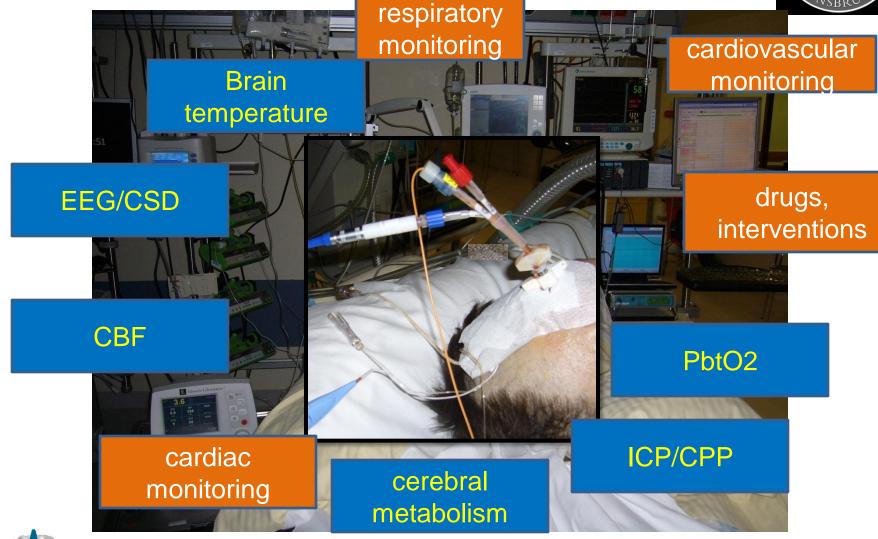
>>>> monitor and go slow <<<<<

TH: Neurological changes

- Neurological Changes
 - Consciousness
 - Lethargy
 - Coma
- Requires intubation, mechanical ventilation, sedation
- Sometimes paralysis
- Neuro exam?

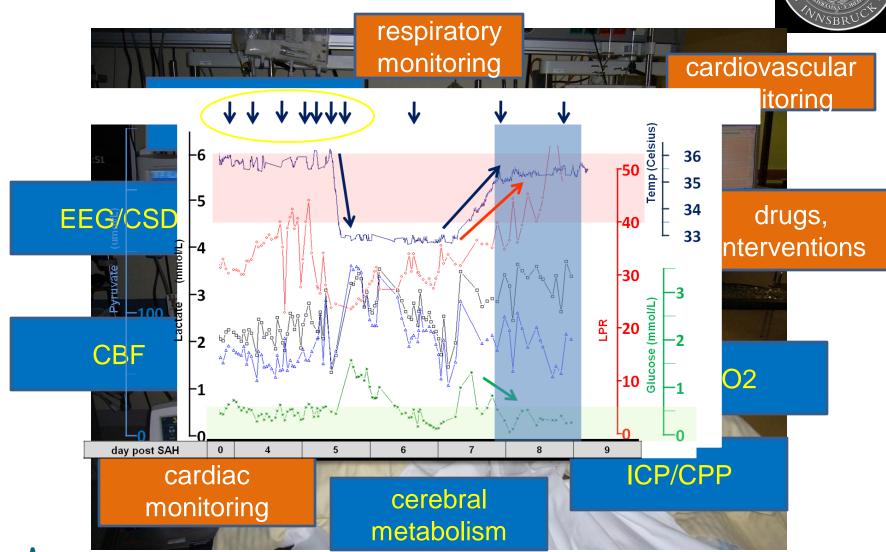

what's the best monitoring?

Multimodal Neuromonitoring



Department of Neurology Innsbruck Medical University, Austria

Multimodal Neuromonitoring



Department of Neurology Innsbruck Medical University, Austria

Multimodal Neuromonitoring

Department of Neurology Innsbruck Medical University, Austria

Intracerebral monitoring in comatose patients treated with hypothermia after a cardiac arrest

J. NORDMARK¹, S. RUBERTSSON¹, E. MÖRTBERG¹, P. NILSSON² and P. ENBLAD²

¹Department of Surgical Sciences/Anaesthesiology and Intensive Care, Uppsala University, Uppsala, Sweden, and ²Department of Neuroscience/ Neurosurgery, Uppsala University, Uppsala, Sweden

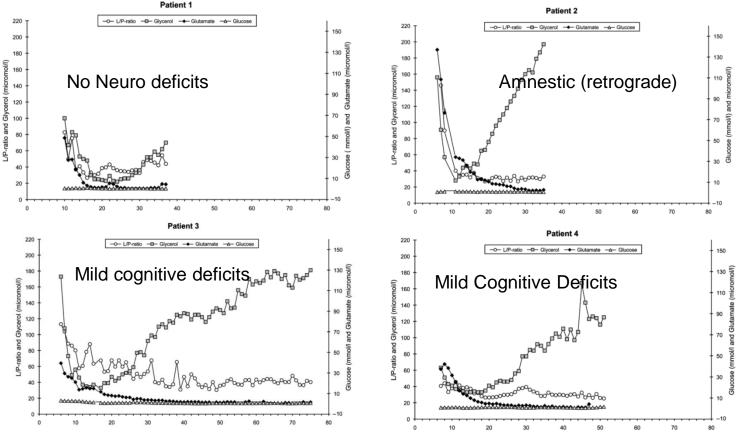
Acta Anaesthesiol Scand 2009; 53: 289-298

Table 1

Intracranial pressure (ICP) and cerebral perfusion pressure (CPP) during induced hypotherma and re-warming in four patients with restoration of spontaneous circulation after cardiac arrest.

	ICP		CPP										
	mmHg	Proportion of monitoring time* (%)			mmHg		Proportion of monitoring time* (%)						
	$\text{Mean}\pm\text{SD}$	Median (10th–90th percent.)	>15	>20	>25	>30	$\text{Mean}\pm\text{SD}$	Median (10th–90th percent.)	<60	<55	<50	<45	<40
Pat 2 Pat 3	$\begin{array}{c} 14 \pm 4 \\ 11 \pm 3 \\ 5 \pm 3 \\ 15 \pm 3 \end{array}$	14 (11–18) 11 (8–15) 5 (1–9) 16 (11–19)	30 9.2 0 43.4	2.7 1.7 0 2.2	1.8 0 0 0	0.9 0 0 0	$51 \pm 10 \\ 67 \pm 10 \\ 63 \pm 12 \\ 60 \pm 11$	47 (42–66)	80 20.8 38.7 58.1	58.2 7.5 22.8 46.4	56.4 1.6 9.5 29.6	20.9 0 2.5 3.9	3.6 0 0 0

*Proportion of monitoring time (whole monitoring period; see Figs 1–4) with measurements above or below the stated thresholds. The measured values were registered after every 15 min.



Intracerebral monitoring in comatose patients treated with hypothermia after a cardiac arrest

J. NORDMARK¹, S. RUBERTSSON¹, E. MÖRTBERG¹, P. NILSSON² and P. ENBLAD²

¹Department of Surgical Sciences/Anaesthesiology and Intensive Care, Uppsala University, Uppsala, Sweden, and ²Department of Neuroscience/ Neurosurgery, Uppsala University, Uppsala, Sweden

Acta Anaesthesiol Scand 2009; 53: 289-298

successful application of hypothermia requires

- Team effort
- Requires vigilance, experience
- Guidelines and protocols
- Provide training for the team

Questions?

Neurological ICU Innsbruck...

