Принятие решения о декомпрессивной краниоэктомии при развитии внутричерепной гипертензии у пострадавших с черепно-мозговой травмой на основании расширенного нейромониторинга с использованием коэффициента ауторегуляции Prx. Клинический пример

Скачать статью.pdf

Внутричерепная гипертензия остается одной из ведущих причин высокой летальности и инвалидизации среди пострадавших с тяжелой черепно-мозговой травмой (ЧМТ) [1—4, 6]. Частота ее среди пострадавших с ЧМТ, находящихся в коме, колеблется от 40 до 60% [6—8]. Нейрохирургические методы занимают особое положение в арсенале методик коррекции внутричерепной гипертензии. К ним относятся: эвакуация интракраниальных гематом, наружное вентрикулярное дренирование, декомпрессивная краниоэктомия [1—3, 6]. Своевременная диагностика и быстрая эвакуация патологических интракраниальных масс является основным элементом при лечении пострадавших с ЧМТ, наряду с устранением факторов вторичного повреждения головного мозга. При травме головного мозга ключевыми способами диагностики нейрохирургических проблем являются методы нейровизуализации головного мозга: КТ, МРТ [3—5]. Показания для нейрохирургического вмешательства определяются на основании оценки волюмометрических критериев и их динамики: объема патологического субстрата, и степени компрессии базальных цистерн, величины смещения срединных структур мозга и т. д. [1, 4, 5]. Основным механизмом действия декомпрессии является создание дополнительного пространства для компенсации увеличенного внутричерепного объема [6—8, 11]. Считается, что эффективность декомпрессии зависит от размера декомпрессионного окна [9—11]. Дополнительным критерием в принятии решения о декомпрессивной краниоэктомии служит мониторинг ВЧД. При повышении внутричерепного давления (ВЧД) выше 20 мм рт.ст., которое не удается устранить методами интенсивной терапии (седация, обезболивание, гипервентиляция, гиперосмолярные растворы), принимается решение об усилении консервативной терапии и/или о декомпрессивной краниоэктомии. Параметры ВЧД, такие как средняя величина и длительность повышения выше 20 мм рт.ст., были использованы в двух последних рандомизированных исследованиях с применением декомпрессивной краниоэктомии [12, 13]. В этих исследованиях использовались разные дизайны, критерии включения, а также границы и длительность внутричерепной гипертензии для принятия решения о декомпрессии. По срокам выполнения декомпрессии в данных исследованиях условно разделяли на ранние вторичные, или нейропротективные, и отсроченные вторичные, когда нейрохирургическое вмешательство рассматривали как последнюю ступень коррекции внутричерепной гипертензии (ВЧГ) [14].

В нашем клиническом примере мы использовали патофизиологический подход к решению вопроса о декомпрессии на основании расширенного мониторинга ВЧД и церебрального перфузионного давления (ЦПД) и коэффициента ауторегуляции Prx [15]. Обсуждаемый пациент входил в группу пострадавших с ЧМТ, у которых выполнялась декомпрессия на фоне декомпенсации ауторегуляции мозговых сосудов и развития внутричерепной гипертензии [15]. Состояние декомпенсации и истощения резервов консервативной терапии мы оценивали на основании динамики коэффициента Prx выше 0,2. Оценка ауторегуляции мозговых сосудов проводилась с помощью корреляционного коэффициента Prx. Расчет Prx производился с помощью программы ICM Plus (Кембридж, Великобритания) и представлял коэффициент корреляции между ВЧД и САД. Коэффициент Prx рассчитывался автоматически по 40 последовательным усредненным значениям ВЧД и АД, данный расчет повторялся в пределах скользящего окна каждые 5 с. Значения Prx — от 1 до 0,2 расценивались как сохранная или частично сохранная ауторегуляция. Значения Prx от 0,2 до 1 расценивалось как полностью утраченная ауторегуляция.

Клинический пример

Первые сутки с момента травмы. Пострадавший мужчина 39 лет получил травму при падении с квадроцикла. Утрата сознания на месте травмы. С места травмы был доставлен в городской стационар. На момент госпитализации состояние оценивалось как сопор, 9 баллов по шкале комы Глазго (ШКГ), отмечались периоды психомоторного возбуждения. Зрачки узкие, по средней линии, фотореакция слабая с двух сторон. Левосторонний гемипарез. На К.Т.: очаги ушибов в лобных долях с двух сторон, левой височной доле, конвекситальное субарахноидальное кровоизлияние (САК). Умеренный отек за счет левого полушария, охватывающая цистерна прослеживается. Желудочковая система и субарахноидальные пространства сужены. В связи с нарастанием дыхательной недостаточности, необходимостью проведения седативной терапии была выполнена интубация трахеи, проводилась искусственная вентиляция легких (ИВЛ). АД 130/80 мм рт.ст., ЧСС 108 уд/мин. Больной находился на ИВЛ, получал седативную, противоотечную, антибактериальную терапию.

Вторые сутки. Пострадавший был переведен в НИИ нейрохирургии. Диагноз: тяжелая открытая ЧМТ. Ушиб головного мозга тяжелой степени с формированием множественных очагов ушиба (33 вида) в лобных долях с двух сторон, левой височной доле. Линейный перелом затылочной кости слева с переходом на основание. Травматическое САК. На К.Т. сохраняется прежняя картина (рис. 1).

Рис. 1. Данные К.Т. на 2–3-и сутки после травмы

Неврологически: ШКГ 9 баллов, на настойчивое обращение получено сжимание в кистях рук. Фотореакция живая, корнеальный рефлекс получен, рефлекторный взор вверх получен на струйное раздражение. Нижнюю челюсть удерживает, живой кашлевой рефлекс. Сохраняется выраженное моторное беспокойство, стереотипность в движениях. АД в пределах 120—130/60—70 мм рт.ст. ЧСС 80—90 уд/мин. ИВЛ в режиме SIMV, RR 10, Vt 0,8 L, PS 14 cm H2O, PEEP 6 cm H2O, FiO2 40%. Учитывая данные КТ, острый период тяжелой ЧМТ, необходимость проведения седативной терапии, было принято решение о проведении мониторинга ВЧД. Паренхиматозный датчик показал: ВЧД 25—29 мм рт.ст., амплитуда ВЧД выше 7 мм рт.ст. Больному проводилась ИВЛ в режиме нормовентиляции, коррекция внутричерепной гипертензии и обеспечение ЦПД выше 60 мм рт.ст. Получал фентанил 100 мкг/ч и пропофол 150 мг/ч. При повышении ВЧД свыше 20 мм рт.ст. введение маннитола 1г/кг массы тела, вазопрессорная поддержка с целью контроля ЦПД.

Третьи сутки. При осмотре через 30 мин после отключения седации и наркотических анальгетиков, была отмечена отрицательная динамика — грубый орально-стволовой синдром в виде симптома Мажанди, узких зрачков, ограничение рефлекторного взора вверх, гиперсаливация. Глотательные движения и кашлевой рефлекс резко угнетены. Низкий мышечный тонус в конечностях. Неврологический осмотр был прекращен из-за эпизода повышения ВЧД до 30—35 мм рт.ст., которое устранено гипервентиляцией, возобновлением седации и аналгезии в прежних дозах, дополнительно проведена инфузия маннитола: 15%, 400 мл. От проведения теста с пробуждением в дальнейшем решено было отказаться. Осмолярность и уровень натрия в плазме были в норме. ИВЛ, SIMV, RR 14, Vt 0,78 L, PS 14 cm H2O, PEEP 6 cm H2O, FiO2 40%. ЕтСО2 30 мм рт.ст. В течение суток субфебрильная температура до 37,7—38 °C. Проводилась контролируемая нормотермия системой наружного охлаждения TropyCool до 36,5—37 °C. Гемодинамика поддерживалась вазопрессорами (мезатон 8—10 мг/ч). АД 135—165/70—90 мм рт.ст. По данным нейромониторинга (рис. 2), ВЧД от 18 до 35 мм рт.ст. ЦПД от 60 до 95 мм рт.ст., коэффициент ауторегуляции Prx — от 0,5 до 0,1.

Рис. 2. Данные расширенного нейромониторинга на 3-и сутки после травмы

КТ повторно не выполнялась из-за нестабильной гемодинамики и ВЧГ, которую провоцировали минимальные манипуляции и изменение положения больного. Наложение трахеостомы было отложено до стабилизации состояния больного. Проводилась консервативная терапия под контролем нейромониторинга.

Четвертые сутки. Повторялись эпизоды ВЧГ. В течение их отмечено появление плато волн ВЧД до 40 мм рт.ст., кратковременное снижение ЦПД ниже 50 мм рт.ст. на фоне плато волн. В динамике отмечена устойчивая тенденция к увеличению коэффициента Prx выше 0,2, что свидетельствовало о срыве ауторегуляции мозгового кровотока (рис. 3).

Рис 3. Данные расширенного нейромониторинга на 4-е сутки после травмы

Произведено углубление седации: пропофол 250—300 мг/ч, фентанил в прежней дозе, глубокая гипервентиляция до ЕтСО2 28 мм рт.ст. под контролем югулярной оксиметрии SvjO2 не ниже 50%. Натрий — от 145 до 149 ммоль/л. Осмолярность — 310 мосмоль/л. В течение суток 15% раствор маннитола был использован четырехкратно, в общем объеме 1600 мл. После совместного обсуждения с нейрохирургами было решено выполнить декомпрессивную трепанацию. Операция: декомпрессивная краниоэктомия лобно-теменно-височной области с двух сторон. Удаление субдуральной гигромы слева объемом 30 мл. Пластика твердой мозговой оболочки надкостничным лоскутом слева.

5—6-е сутки. В послеоперационном периоде отмечалась стабилизация ВЧД 5–12 мм рт.ст., ЦПД на уровне 60—65 мм рт.ст., Prx>0,2 (рис. 4).

Рис. 4. Данные расширенного нейромониторинга после выполнения декомпрессии

Доза пропофола снижена до 80 мг/ч, введение фентанила прекращено, доза мезатона уменьшена до 5 мг/ч. Контролируемая нормотермия прекращена, температура субфебрильная до 37,8 °C. При осмотре вне седации: ШКГ 6 баллов, приведение со сгибанием в правой руке, без отчетливой локализации, слабое сгибание в правой ноге. При пассивном открывании век глазные яблоки фиксированы в центральном положении, зрачки узкие, фотореакция ослаблена, слабый корнеальный рефлекс с двух сторон, редкие мигательные движения век. Нижняя челюсть отвисает, из ротовой полости обильное слюнотечение, язык несколько выступает за линию резцов, отечный. Нижнечелюстной рефлекс получен. АД 120—145/85—80 мм рт.ст., ЧСС 65–90 уд/мин, ритм синусовый. ИВЛ, SIMV RR 14, Vt 0,75 L, PS 12 cm H2O, PEEP 7 cm H2O, FiO2 40%. Дыхание в легких симметричное с двух сторон, жесткое, незначительное ослабление в заднебазальных отделах с двух сторон. Отмечается нарастание воспалительных маркеров в крови: лейкоцитоз со сдвигом формулы влево, ЦРП 178 мг/л. Рентгенологически — двусторонняя пневмония. Проводилась антибактериальная терапия с учетом чувствительности флоры. Выполнена транскутанная дилатационная трахеостомия.

7—11-е сутки. Стабилизация гемодинамики, прекращение вазопрессорной поддержки и седативной терапии. Сохранялась субфебрильная температура. АД 120—130/60—70 мм рт.ст. ЧСС 80—90 уд/мин. ВЧД в пределах 5—7 мм рт.ст., ЦПД 60—65 мм рт.ст. Значения Prx варьировали от 0 до –0,1, что свидетельствовало о восстановлении ауторегуляции. Нейромониторинг прекращен на 11-е сутки.

12—20-е сутки. Состоялся регресс инфекционно-воспалительных проявлений, нормализовалась температура, разрешилась двусторонняя пневмония. В неврологическом статусе положительная динамика: ШКГ 10 баллов, легкий правосторонний гемипарез. Выполняет отдельные инструкции: пожимает руки по просьбе, активно жестикулирует. Стабильная гемодинамика, проводилась дыхательная реабилитация, переведен в СРАР 5 cm H2O, FiO2 =25%, PS 10 cm H2O.

30-е сутки. Пациент на фоне восстановления сознания был отключен от ИВЛ. Гемодинамика стабильная. Через 22 мес в связи с появлением раневой ликвореи больному успешно выполнена плаcтика ТМО в левой лобно-теменно-височной области. Позже в связи с развитием гидроцефалии было выполнено вентрикуло-перитонеальное шунтирование справа. Через 5 мес пациент был выписан из стационара. В неврологическом статусе сохранялся легкий правосторонний гемипарез, сенсорно-моторная афазия. Восстановилось глотание, был деканюлирован. В дальнейшем пациент проходил курсы реабилитационно-восстановительного лечения до 2 раз в год. Через 12 мес состояние по шкале исходов Глазго оценивалось как умеренная инвалидизация.

Обсуждение

Представленным клиническим примером показано, что наряду с традиционным мониторингом параметров ВЧД и ЦПД мониторинг ауторегуляции мозговых сосудов позволяет своевременно принимать решение о выполнении декомпрессивной краниоэктомии. В представленном клиническом наблюдении стойкая регистрация срыва ауторегуляции на 4-е сутки свидетельствовала о дальнейшей невозможности использования медикаментозных манипуляций со средним артериальным давлением и соответственно лишало возможности безопасного обеспечения ЦПД выше 60 мм рт.ст. В соответствии с вышесказанным любые попытки повышения САД приводили бы к пассивному повышению ВЧД и дальнейшему снижению ЦПД. Можно предположить, что при отсутствии мониторинга ауторегуляции интенсивная терапия протекала бы по варианту дальнейшего наращивания агрессивности, так как были сохранны резервы по использованию гиперосмолярных растворов, кроме того, удавалось снижать ВЧД на углубление седации и проводить безопасное углубление гипервентиляции под контролем югулярной оксиметрии. Однако в создавшейся клинической ситуации осмотические диуретики не могли рассматриваться как средство продленной коррекции ВЧГ, так как прослеживалась тенденция к гипернатриемии, а введение маннитола достигло максимальных суточных доз. При наращивании агрессивности лечения ВЧГ в арсенале реаниматолога оставались методы гипотермии и барбитуровой комы. Барбитураты способны эффективно устранять внутричерепную гипертензию, но количество побочных осложнений, вызванных их использованием, нивелирует их положительный эффект на ВЧД [16, 17]. Одним из грозных осложнений является артериальная гипотензия, которая является мощным повреждающим фактором для травмированного мозга и значительно ухудшает исход при ЧМТ [16, 17]. Можно предполагать, что использование барбитуратов у данного пациента потребовало бы более высоких доз вазопрессоров и агрессивной инфузионной терапии, что само по себе могло привести к различным осложнениям: отеку легких, почечной недостаточности, сердечно-сосудистой недостаточности и т. д. [18, 19]. Барбитураты на сегодняшний день рассматриваются как последняя ступень агрессивной терапии ВЧГ, и их использование не улучшает исходы при ЧМТ [1, 4, 6, 7, 16, 17].

Метод гипотермии зарекомендовал себя эффективным методом коррекции внутричерепной гипертензии. Однако международные многоцентровые исследования не показали улучшения исходов при использовании гипотермии в сравнении с традиционными методами интенсивной терапии [18]. При этом было отмечено, что количество побочных осложнений, связанных с использованием гипотермии, не уступает их количеству при использовании барбитуратов [19, 20]. Декомпрессивная краниоэктомия также не является панацеей, но в нашем клиническом случае продемонстрировала свою эффективность для коррекции ВЧГ и стабилизации ЦПД. Кроме того, после декомпрессии появилась возможность для снижения агрессивности методов интенсивной терапии в виде уменьшения доз седативных препаратов и катехоламинов. Мы смогли отменить наркотические анальгетики, отказаться от гипервентиляции, прекратить введение гиперосмолярных растворов и достигнуть нормализации уровня натрия и восстановления ауторегуляции.

Таким образом, продемонстрирована возможность нового подхода к принятию решения о декомпрессивной краниоэктомии у пострадавших с травматическим отеком головного мозга и внутричерепной гипертензией. Суть нового подхода заключается в непрерывной оценке ауторегуляции мозговых сосудов с помощью коэффициента Prx наряду с такими важными параметрами нейромониторинга, как ВЧД и ЦПД. Мониторинг коэффициента Prx позволяет своевременно распознавать срыв ауторегуляции мозговых сосудов и дает возможность принять решение о выполнении декомпрессивной краниоэктомии до момента наращивания агрессивных методов интенсивной терапии (гипотермии и барбитуровой комы).

Конфликт интересов отсутствует.

Комментарий

В клиническом примере, описанном группой авторов, представлены новые возможности нейромониторинга у пострадавших с тяжелой ЧМТ. Благодаря программному обеспечению, дополнительно с АД, ВЧД, ЦПД, проводилось непрерывное измерение статуса ауторегуляции мозгового кровотока с помощью коэффициента Prx (pressure reactivity index) [1].

Публикации последних 5–7 лет подтверждают, что данный параметр нейромониторинга занимает одно из ведущих мест и активно используется при определении стратегии интенсивной терапии у пострадавших с острым церебральным повреждением. Интерес к проблеме мониторинга ауторегуляции мозгового кровотока значительно возрос, и этому есть несколько причин. Во-первых, значимую роль играют доступность и низкая цена метода, основанного на компьютерном анализе медленноволновых колебаний АД и ВЧД. Именно этот факт обеспечил широкое распространение метода оценки ауторегуляции в нейроинтенсивной терапии. Во-вторых, актуальность мониторинга ауторегуляции была подчеркнута в Международных рекомендациях по ведению пострадавших с ЧМТ [2]. В-третьих, созрела необходимость проводить индивидуализацию интенсивной терапии на основании многопараметрического нейромониторинга, с учетом тяжести и давности церебрального повреждения, возраста пострадавшего, сопутствующей соматической патологии, факторов вторичного повреждения головного мозга и т.д. [3,4].

Своевременность оказания нейрохирургического пособия, бесспорно, остается ведущим фактором, определяющим исход у пострадавших с ЧМТ. Декомпрессивная краниоэктомия — один из методов коррекции ВЧГ среди данной категории пострадавших, особенно при развитии внутричерепной гипертензии. К сожалению, сроки выполнения декомпрессивной краниоэктомии не определены. Использование различных стратегий: ранней «нейропротективной» или отсроченной декомпрессии — не показали убедительных преимуществ и не дали ожидаемого улучшения исходов при ЧМТ.

В предложенной работе показан совершенно новый подход, который можно назвать патофизиологическим, основанный на оценке ауторегуляции. По мнению авторов, срыв ауторегуляции мозгового кровотока является сигналом для выполнения декомпрессивной краниоэктомии. Это выглядит вполне обоснованным, так как при отсутствии ауторегуляции поддержание ЦПД на фоне внутричерепной гипертензии становится весьма проблематичным. На примере клинического случая авторам удалось наглядно показать клиническую ценность применения коэффициента ауторегуляции Prx у пациентов с тяжелой черепно-мозговой травмой. Результаты изложены четко и содержательно обсуждены в контексте современных публикаций на эту тему.

Представляется целесообразным дальнейшее исследование коэффициента ауторегуляции Prx, его внедрение в комплекс мер нейромониторинга у наиболее тяжелых категорий реанимационных больных и использование в качестве ориентира для целенаправленной терапии.

М.Ю. Киров (Архангельск)

Список литературы:

  1. Доказательная нейротравматология. Под ред. Потапова А.А., Лихтермана Л.Б. М.: Антидор. 2003;517.
  2. Клиническое руководство по черепно-мозговой травме. Под ред. Коновалова А.Н., Лихтермана Л.Б., Потапова А.А. М.: Антидор. 1998.
  3. Потапов А.А., Крылов В.В., Лихтерман Л.Б., Царенко С.В., Гаврилов А.Г., Петриков С.С. Современные рекомендации по диагностике и лечению тяжелой черепно-мозговой травмы. Вопросы нейрохирургии. 2006;1:3-8.
  4. Потапов А.А., Захарова Н.Е., Пронин И.Н., Корниенко В.Н., Гаврилов А.Г., Кравчук А.Д., Ошоров А.В., Сычев А.А., Зайцев О.С., Фадеева Л.М., Такуш С.В. Прогностическое значение мониторинга внутричерепного и церебрального перфузионного давления, показателей регионарного кровотока при диффузных и очаговых повреждениях мозга. Вопросы нейрохирургии. 2011;3:3-18.
  5. Zakharova N, Kornienko V, Potapov A, Pronin I. Neuroimaging of Traumatic Brain Injury. Springer International Publishing. Switzerland 2014. doi: 10.1007/978-3-319-04355-5.
  6. Maas AI, Dearden M, Teasdale GM, Braakman R, Cohadon F, Iannotti F, Karimi A, Lapierre F, Murray G, Ohman J, Persson L, Servadei F, Stocchetti N, Unterberg A. EBIC-guidelines for management of severe head injury in adults. European Brain Injury Consortium. Acta Neurochir (Wien). 1997;139(4):286-2–94. PubMed PMID:9202767.
  7. Stocchetti N, Zanaboni C, Colombo A, Citerio G, Beretta L, Ghisoni L, Zanier ER, Canavesi K. Refractory intracranial hypertension and ««second-tier»» therapies in traumatic brain injury. Intensive Care Med. 2008 Mar;34(3):461-467. Epub 2007 Dec 8. PubMed PMID: 18066523. doi:10.1007/s00134-007-0948-9.
  8. Miller JD, Becker DP, Ward JD, Sullivan HG, Adams WE, Rosner MJ. Significance of intracranial hypertension in severe head injury. J Neurosurg. 1977 Oct;47(4):503-516. doi:10.3171/jns.1977.47.4.0503.
  9. Bullock MR, Chesnut R, Ghajar J, Gordon D, Hartl R, Newell DW, Servadei F, Walters BC, Wilberger JE. Surgical Management of Traumatic Brain Injury Author Group. Surgical management of acute epidural hematomas. Neurosurgery. 2006Mar;58(3)Suppl:1-60; discussion Si-iv. Review. doi:10.1097/00006123-200603001-00006.
  10. Menon DK, Matta BF. Intensive care after acute head injury. In: Matta B, Menon D, Turner J, eds. Neuroanesthesia and Neurointensive Care. London: Greenwich Medical Media. 2000;301-317. doi:10.1016/b978-141604653-0.10034-2.
  11. Munch E, Horn P, Schurer L, Piepgas A, Torsten P, Schmidek P. Management of severe traumatic brain injury by decompressive сraniectomy. Neurosurgery. 2000;47:315-323. doi:10.1097/00006123-200008000-00009.
  12. Cooper DJ, Rosenfeld JV, Murray L, Arabi YM, Davies AR, D’Urso P, Kossmann T, Ponsford J, Seppelt I, Reilly P, Wolfe R. DECRA Trial Investigators, Australian and New Zealand Intensive Care Society Clinical Trials Group (2011) Decompressive craniectomy in diffuse traumatic brain injury. N Engl J Med. 2011;364:1493-1502. doi:10.1056/nejmoa1102077.
  13. Hutchinson PJ, Corteen E, Czosnyka M, Mendelow AD, Menon DK, Mitchell P, Murray G, Pickard JD, Rickels E, Sahuquillo J, Servadei F, Teasdale GM, Timofeev I, Unterberg A, Kirkpatrick PJ. Decompressive craniectomy in traumatic brain injury: the randomized multicenter RESCUEicp study (www.RESCUEicp.com). Acta Neurochir Suppl. 2006;96:17-20. doi:10.1007/3-211-30714-1_4.
  14. Kolias AG, Li LM, Guilfoyle MR, Timofeev I, Corteen EA, Pickard JD, Kirkpatrick PJ, Menon DK, Hutchinson PJ. Decompressive craniectomy for acute subdural hematomas: time for a randomized trial. Acta Neurochir (Wien). 2013 Jan;155(1):187-188. doi:10.1007/s00701-012-1531-x.
  15. Ошоров А.В., Савин И.А., Горячев А.С., Попугаев К.А., Потапов А.А., Гаврилов А.Г. Первый опыт применения мониторинга ауторегуляции мозговых сосудов в остром периоде тяжелой черепно-мозговой травмы. Анестезиология и реаниматология. 2008;2:61-64. doi:10.14412/1995-4484-2008-8.
  16. Cormio M, Gopinath SP, Valadka A, Robertson CS. Cerebral hemodynamic effects of pentobarbital coma in head-injured patients. J Neurotrauma. 1999 Oct;16(10):927-936. doi:10.1089/neu.1999.16.927.
  17. Roberts I, Sydenham E. Barbiturates for acute traumatic brain injury. Cochrane Database Syst Rev. 2012 Dec 12;12:CD000033. doi: 10.1002/14651858.cd000033.pub2.
  18. Robertson CS, Valadka AB, Hannay HJ, Contant CF, Gopinath SP, Cormio M, Uzura M, Grossman RG. Prevention of secondary ischemic insults after severe head injury. Crit Care Med. 1999 Oct;27(10):2086-2095. doi: 10.1097/00003246-199910000-00002.
  19. Sydenham E, Roberts I, Alderson P. Hypothermia for traumatic head injury. Cochrane Database Syst Rev. 2009 Apr 15;(2):CD001048. doi: 10.1002/14651858.cd001048.pub4. review. pubmed pmid: 19370561.
  20. Polderman KH. Mechanisms of action, physiological effects, and complications of hypothermia. Crit Care Med. 2009 Jul;37(7 Suppl):186-202. doi:10.1097/ccm.0b013e3181aa5241. review.
Вопросы нейрохирургии им. Н.Н. Бурденко. 2015. Т. 79. № 6. С. 92-99.
26 декабря 2015

Септический шок у пациента с тяжелой черепно-мозговой травмой

Скачать статью.pdf

ФГБНУ НИИ нейрохирургии им. акад. Н.Н. Бурденко

Резюме

В представленном клиническом наблюдении иллюстрируется роль скрининга маркеров воспаления и расширенного гемодинамического мониторинга в оптимизации интенсивной терапии пациента в остром периоде тяжелой черепно-мозговой травмы . Пациент поступил в отделение реанимации с диагнозом: «Острая тяжелая закрытая сочетанная черепно-мозговая травма». При поступлении уровень сознания оценивался по ШКГ 5 баллов. С первых суток пребывания в реанимации у пострадавшего отмечались гипертермия до 39,0º С, повышение С реактивного белка, лейкоцитоз, рентгенологические признаки аспирационной пневмонии. На вторые сутки для поддержания срАД не ниже 80 мм рт ст потребовалась инфузия норадреналина. На 10-е сутки состояние больного резко ухудшилось. Развилась гипертермия до 40,2º С, развилась сердечно-сосудистая недостаточность (на фоне вазопрессорной поддержки возникло резкое снижение АД до 49/20 мм рт ст). Начат расширенный гемодинамический мониторинг PiCCO (транспульмонарная термодилюция). Возникла необходимость ранней диагностики сепсиса. Стандартно используемые в работе отделения лабораторные исследования не соответствовали критериям септического шока. Отмечалось незначительное повышение CRP, а прокальциотонин (PCT) был в пределах нормальных величин. Диагностический поиск был дополнен исследованием интерлейкинов (IL-6 и IL-2R) в плазме крови. Было выявлено значительное повышение их значений, что можно было расценивать как начальные проявления системной воспалительной реакции. В результате состояние пациента было расценено как септическое. Была расширена антибактериальная терапия, начата продленная вено-венозная гемофильтрация. На фоне проводимой терапии состояние пациента стабилизировалось, у пациента восстановилось сознание в виде открывания глаз, выполнения простых инструкций. К моменту выписки состояние пациента по шкале исходов Глазго оценивалось в 4 балла.

Введение

Снижение артериального давления (АД) является ведущим фактором вторичного повреждения головного мозга у пациентов с тяжелой черепно-мозговой травмой (тЧМТ). Артериальная гипотензия (АГ) у пациентов с повышенным внутричерепным давлением (ВЧД) приводит к снижению церебрального перфузионного давления (ЦПД), что может привести к вторичной ишемии мозга. АГ требует незамедлительной коррекции, с учетом механизма её развития [1, 2,3]. В представленном клиническом наблюдении, у пациента с тЧМТ, осложнившейся септическим шоком, иллюстрируется роль расширенного гемодинамического мониторинга и скрининга маркеров воспаления в оптимизации интенсивной терапии (ИТ).

Клиническое наблюдение

Пациент К., 42 года поступил в отделение реанимации Института нейрохирургии с диагнозом: «Острая тяжелая закрытая сочетанная черепно-мозговая травма, острая субдуральная гематома в правой лобно-теменно-височной области, ушиб головного мозга средней степени, травматическое субарахноидальное кровоизлияние, перелом чешуи височной кости слева; перелом левой ключицы». При поступлении уровень сознания оценивался по ШКГ 5 баллов. В ответ на болевой стимул отмечалось приведение в руках, разгибание в ногах, анизокория D>S, фотореакция вялая, кашлевой рефлекс угнетен. По данным компьютерной томографии головного мозга: справа в лобно-височно-теменной области определялась субдуральная гематома, срединные структуры смещены влево, желудочковая система и охватывающая цистерна компримированы. Также выявлялись признаки САК и перелом чешуи височной кости слева (рис.1).

Рис. 1 КТ головного мозга пациента К., 42 года

Катетеризирована лучевая артерия, начат инвазивный мониторинг АД (монитор - Philips IntelliVue MP60). Системное АД без вазопрессорной и инотропной поддержки состовляло: АД – 145/88-160/90 мм рт.ст., ЧСС- 69-85 уд/мин. Дыхание аппаратное в режиме SIMV+PS, с параметрами вентиляции: tV- 0.7 l, RR-14, PS- 14 mbar, PEEP- 7 mbar, FiO2- 0.6, обеспечивающими нормовентиляцию по данным КОС артериальной крови. При фибробронхоскопии - признаки перенесенной аспирации.

После выполнения первичного диагностического поиска, было принято решение о хирургическом вмешательстве и выполнена «декомпрессивная трепанация черепа в правой лобно-теменно-височной области с удалением субдуральной гематомы». Операция была завершена установкой в премоторной области справа паренхиматозного датчика фирмы Codman для мониторинга ВЧД и контроля ЦПД (ЦПД=АДср-ВЧД). В течение последующих 10 суток, на протяжении всего острого периода, отмечались неоднократные подъемы ВЧД, максимально до 27 ммрт.ст., которые корректировали использованием гиперосмолярных растворов, углублением седации и обезболивания.

С первых суток пребывания в Институте у пострадавшего отмечались гипертермия до 39,0º С, повышение С реактивного белка до 125 мг/л, лейкоцитоз- 22.89 х 10 000000000/л (норма- <5 мг/л и 4.0-10.0 х 10 000000000/л соответственно) со сдвигом лейкоцитарной формулы влево, рентгенологические признаки аспирационной пневмонии (рис. 2).

Рис. 2 Рентгенограмма органов грудной полости пациента К., 42 года

На вторые сутки для поддержания срАД не ниже 80 мм рт ст потребовалась инфузия норадреналина в дозе 0,1-1,3 мкг/кг/мин.

На фоне проводимой терапии к девятым суткам отмечалась стабилизация состояния пациента, при сохраняющейся умеренной гипертермии, снизился С реактивный белок до 33 мг/л; для поддержания гемодинамики требовались меньшие дозы норадреналина (0,22 мкг/кг/мин).

На 10-е сутки состояние больного резко ухудшилось. Развилась гипертермия до 40,2º С, выраженная десатурация капиллярной крови до 81-84%, при фракции кислорода во вдыхаемой смеси 100% (FiO2-1,0). Развилась сердечно-сосудистая недостаточность: несмотря на продолжающуюся постоянную инфузию норадреналина возникло резкое снижение АД до 49/20 мм рт ст. Для поддержания адекватного среднего АД (80 мм рт.ст) потребовалась комбинация симпатомиметиков: мезатон - 5,7 мкг/кг/мин и норадреналин в дозе 1,4 мкг/кг/мин. Также развилось нарушение деятельности желудочно-кишечного тракта: энтерально вводимая питательная смесь не усваивалась, сформировался пареза кишечника. В этот период ауторегуляция мозгового кровотока была сохранна, поэтому на фоне артериальной гипотензии, снижения ЦПД, увеличилось кровенаполнение мозга, развилась внутричерепная гипертензия, с эпизодами подъема ВЧД до 40 ммрт ст. В этой ситуации было необходимо провести дифференциальную диагностику между сепсисом, формированием диэнцефального синдрома, вторичной надпочечниковой недостаточностью, и первичным повреждением миокарда. Результаты ЭХО КГ не выявили перегрузку левых и правых отделов сердца, сократительная способность миокарда не была нарушена. С целью расширения гемодинамического мониторинга была использована методика PiCCO, с помощью монитора Philips IntelliVue MP60, в который интегрированы соответствующие блоки и программы. Калибровка проводилась каждые 6-8 часов введением 15 мл изотонического раствора NaCl, охлажденного до 8о С. Оценивали: показатели работы сердца - ударный объем (УО), сердечный выброс (СВ), сердечный индекс (СИ), общую фракцию изгнания (ОФИ); преднагрузку – ОПСС; волюметрические показатели- индекс общего конечно-диастолического объема сердца (ИОКДО), индекс внутригрудного объема крови (ИВГОК), индекс экстраваскулярной легочной жидкости (ИЭВЛЖ), индекс проницаемости легочных капилляров (ИПЛК), а также вариабельность ударного объема (ВУО) – как динамический показатель эффективности инфузионной терапии. Для оценки периферического кровотока использовался также индекс перфузии (ИП), который рассчитывается исходя из анализа плетизмографической волны. Дозы симпатомиметических препаратов подбирались с учетом данных, получаемых в результате расширенного мониторинга параметров системной гемодинамики.

При исследовании гормонального профиля был исключен клинически значимый дефицит кортизола, тиреоидных гормонов, АКТГ в плазме крови. Стандартно используемые в работе отделения лабораторные исследования не соответствовали критериям септического шока. Так, отмечалось незначительное повышение CRP, а прокальциотонин (PCT) был в пределах нормальных величин, при умеренно выраженном лейкоцитозе (13х109, без сдвига лейкоцитарной формулы влево). Диагностический поиск был дополнен исследованием интерлейкинов (IL-6 и IL-2R) в плазме крови. Было выявлено значительное повышение их значений >6000 пг/мл и 2805 Е/мл (норма: 0.0-5.9 пг/мл и 158-623 Е/мл соответственно), что можно было расценивать как начальные проявления системной воспалительной реакции.

В результате состояние пациента было расценено как септическое. Была расширена антибактериальная терапия, начата продленная вено-венозная гемофильтрация (ПВВФ). Взяты биологические среды на микробиологический анализ (на вторые сутки культивирования был выявлен рост Грамм (-) возбудителя в посевах крови).
На фоне проводимой терапии состояние пациента стабилизировалось: удалось корректировать артериальную гипотензию, добиться необходимого ЦПД, что привело к нормализации ВЧД. В течение последующих двух суток, температура тела нормализовалась до 36,0º С, удалось уменьшить дозы симпатомиметиков в 2-3 раза, снизить FiO2 c 1.0 до 0.6, у пациента восстановилось сознание в виде открывания глаз, выполнения простых инструкций. На момент перевода пациента из Институте в реабилитационный центр оценка по ШИГ – 4 балла.

Обсуждение

В представленном клиническом наблюдении иллюстрируется роль скрининга маркеров воспаления и расширенного гемодинамического мониторинга в оптимизации ИТ пациента в остром периоде т ЧМТ. Бактериальные инфекции и сепсис являются основной причиной заболеваемости и смертности в ОРИТ [4, 5]. Не вызывает сомнений тот факт, что высокая смертность от сепсиса во многом обусловлена его поздней диагностикой и неэффективным мониторингом проводимого лечения. Клинические и лабораторные признаки системной воспалительной реакции, такие как лихорадка, тахикардия, тахипноэ и лейкоцитоз, могут быть результатом неинфекционных причин. С этих позиций особый интерес представляет поиск надежных и ранних маркеров системной воспалительной реакции. Если сравнивать чувствительность таких маркеров септической реакции как CRP (Ц-реактивный протеин), PCT (прокальцитонин) и IL-6 (интерлейкин-6), то по данным мировой литературы большинство авторов ставят на первое место прокальцитонин, далее интерлейкины и затем С-реактивный белок [6, 7]. Но, необходимо понимать, что в каждом конкретном случае нужно комплексно оценивать степень выраженности инфекционного процесса и его локализацию. В литературе описаны случаи, когда концентрация прокальцитонина не возрастала или возрастала в малой степени при тяжелых вирусных инфекциях или воспалительной реакции неинфекционной природы. [8, 9]. Также, доказано, что прокальцитонин не определяется или его уровень очень низок при изолированной пневмонии, но чрезвычайно высок при пневмонии и сепсисе. Что касается IL-6 – большинство авторов ставят его на второе место после прокальцитонина по чувствительности и специфичности в диагностике сепсиса. В приведенном клиническом наблюдении на 10-е сутки состояние больного резко ухудшилось, развилась сердечно-сосудистая недостаточность, артериальная гипотензия, резистентная к стандартным дозам симпатомиметических препаратов, в сочетании с выраженной устойчивой гипертемией. Артериальная гипотензия, снижение ЦПД, сочетались с эпизодами подъема ВЧД до 40 ммрт ст. В этой клинической ситуации была необходима экстренная дифференцировка между сепсисом, формированием диэнцефального синдрома, вторичной надпочечниковой недостаточностью, и первичным повреждением миокарда.

Рис. 3 Динамика маркеров воспаления

Представленный на рисунке 3 график демонстрирует отсроченную реакцию CRP и РСТ на манифестацию инфекционного процесса, их повышение отмечалось лишь через 48 часов, от развития клиники септического шока, тогда как интерлейкины, незамедлительно отреагировали на септицемию. График также демонстрирует эффективность ПВВФ в элиминации провоспалительных цитокинов из плазмы крови.
При яркой клинической картине сепсиса не было получено его подтверждения «стандартными» лабораторными методами (PCT, CRP, лейкоцитарная формула). Диагностический поиск был незамедлительно дополнен исследованием интерлейкинов, что позволило сократить время до начала патогенетической терапии. У данного пациента, именно IL-6, оказался наиболее быстрым и информативным показателем развития и выраженности септического процесса. Приводимое клиническое наблюдение наглядно демонстрирует необходимость всесторонней оценки инфекционного процесса. Все это говорит о необходимости проводить дальнейшие исследования по сравнению чувствительности различных маркеров системной воспалительной реакции и сепсиса. Необходимо отдельно остановиться на состоянии системной гемодинамики.

Рис.4 Динамика давления

Как видно из графика на рис. 4, мы поддерживали систолическое и среднее АД на достаточно высоких цифрах, что противоречит современным рекомендациям по терапии сепсиса. Тому есть свое объяснение. Последние международные рекомендации по ведению пациентов с тЧМТ подчеркивают необходимость мониторинга АД и предупреждения артериальной гипотензии. При этом артериальной гипотензией считается снижение систолического артериального давления ниже 90 мм рт. ст. (рекомендации второго уровня). Там же приводятся данные демонстрирующие ухудшение результатов лечения при снижении Ср. АД ниже 80 мм рт ст [10]. Высокие цифры среднего АД, обеспечивали ЦПД выше 60 мм рт. ст., что было необходимо для поддержания адекватного объемного мозгового кровотока, у пациента в остром периоде тЧМТ, осложненной отеком мозга. Как же поддерживались необходимые параметры системной гемодинамики в анализируемом клиническом наблюдении? Адекватность терапии, направленной на поддержание необходимого артериального давления, обеспечивалась расширенным гемодинамическим мониторингом PiCCO (транспульмонарная термодилюция).

Рис 5 динамика СИ

График демонстрирует динамику сердечного индекса (рис.5). В течение первых суток септического шока нормальный уровень СИ поддерживался за счет выраженной тахикардии (ЧСС до 167 уд/мин) при низком ударном объеме - 87,6 мл. На фоне проводимой терапии мы добились нормализации сердечного ритма 80-83 уд/мин, при этом СИ поддерживался уже за счет адекватного УО – 160 мл.
Одним из методов поддержания необходимого среднего АД было применение симпатомиметиков (рис. 6).

Рис. 6 Применение симпатомиметиков

В приводимом клиническом наблюдении требовалось сочетание двух препаратов мезатон (фенилэфрин) и норадреналин в высоких дозировках. Безопасность применения вазопрессоров контролировалась двумя показателями гемодинамики ОПСС и индексом перфузии (ИП). Из графика видно, что применение высоких доз симпатомиметоков не приводило к нарушению периферической циркуляции крови. Так, на начальном этапе при применении мезатона и норадреналина в дозировке 5,7 мкг/кг/мин и 1,4 мкг/кг/мин, соответственно, выявлялись относительно низкие цифры ОПСС (830 DSм2/см5) и высокий показатель ИП - 8. В дальнейшем в процессе терапии комбинацией симпатомиметиков ИОПСС не превышал физиологической границы (2000 DSм2/см5), а индекс перфузии не был ниже 1,2. Другим важным компонентом поддержания адекватных показателей системной гемодинамики является инфузионная терапия. При выборе тактики увеличения либо снижения темпа инфузионной терапии мы ориентировались на статические (ЦВД, ИВГОК) и динамические (ВУО) показатели волемии (рис.7).

Рис. 7 Инфузионная терапия

На представленном графике видно, что с первых дней сепсиса статические показатели волемии были выше принятых нормальных значений, однако мы повышали темп и объем инфузионной терапии, ориентируясь на динамический показатель волемии. Как указывалось выше, у пациентов с тЧМТ критическим моментом является предупреждение артериальной гипотензии. В обсуждаемом клиническом наблюдении для поддержания адекватного АД при развитии септического шока было необходимо использовать два симпатомиметка: норадреналин и мезатон. В настоящее время, так и не сложилось однозначного отношения к выбору симпатомиметических препаратов для коррекции артериальной гипотензии у пациентов с тяжелым сепсисом. Несмотря на то, что в «Руководстве по ведению пациентов с тяжелым сепсисом и септическим шоком» препаратами выбора считаются допамин и норадреналин, ряд авторов получили достаточно противоречивые результаты при использовании этих препаратов [11]. Так Azarov et al выявил связь между применением допамина и увеличением смертности при септическом шоке [12]. Backer et al., не нашел никаких существенных различий в летальности между пациентами, получавшими допамин и норадреналин, однако отметил большее число побочных эффектов при применении допамина [13]. Gaurav Jain and D. K. Singh, показали, что мезатон сопоставим с норадреналином в коррекции гемодинамических и метаболических нарушений при сепсисе [14]. Shenoy et al., проведя мета-анализ применения допамина и норадреналина у пациентов с тяжелым сепсисом, пришли к выводу, что при наличии тех или иных гемодинамических преимуществ каждого, нельзя говорить о превосходстве одного симпатомиметика над другим [15]. В приведенном клиническом наблюдении выбор препарата основывался на данных расширенного мониторинга и выявлении причины снижения АД. Было выявлено, что у пациента на фоне сохраненной сократительной способности миокарда (адекватная фракция изгнания и высокие цифры ВОУ) отмечался вазопаралич (низкое ОПСС и высокий показатель ИП). Для нормализации этих показателей, было необходимо применять комбинацию мезатона с норадреналином. Высокие дозы этих препаратов применяли, используя ОПСС и ИП как критерии безопасности проводимой вазопрессорной терапии. Это позволило избежать выраженной вазоконстрикции и нарушения периферического кровотока. Необходимо отдельно остановиться на ИП. Этот показатель, достаточно широко обсуждаемый в англоязычной литературе, незаслуженно, на наш взгляд, обделен вниманием отечественными авторами. ИП рассчитывается исходя из анализа плетизмографической волны. Она состоит из двух компонентов обозначаемых как DC и AC. DC - это непульсирующий компонент плетизмографического сигнала (от венозной и нециркулирующей артериальной крови), а AC – пульсирующий компонент пульсовой вольны (от пульсирующей артериальной крови). ИП рассчитывается как AC/DC × 100%, и автоматически выводится на большинство прикроватных мониторов [16]. Высокие показатели этого индекса говорят о вазодилятации. А низкие о выраженной вазоконстрикции, в том числе и при избыточном применении симпатомиметиков, либо в сочетании с выраженной гиповолемией [16]. ИП позволяет не только диагностировать нарушение микроциркуляции конечностей, но и прогнозировать нарушение спланхнического кровотока [17,18,19 ]. Таким образом, данные расширенного гемодинамического мониторинга, мониторинга периферического кровообращения позволили использовать у пациента К., с тЧМТ, осложнённой септическим шоком, высокие дозы вазопрессоров для поддержания адекватного ЦПД без нарушения микроциркуляции и развития полиорганной недостаточности.

Заключение

Дополненный исследованием интерлейкинов стандартный скрининг маркеров воспаления в сочетании с расширенным гемодинамическим мониторингом способствовали своевременному проведению патогенетической терапии с учетом индивидуальных характеристик гемодинамического профиля у пациента с тяжелой черепно-мозговой травмой, осложненной септическим шоком. Проведенная терапия обеспечила адекватную церебральную перфузию, без ущерба для микроциркуляции во внутренних органах, что позволило добиться регресса неврологической симптоматики и избежать развития полиорганной недостаточности.

Список литературы:

  1. Потапов А.А., Гайтур Э.И., Мухаметжанов Х., и др.: Тяжелая черепно-мозговая травма, сопровождаю-щаяся гипоксией и гипотензией у взрослых и детей.// В кн.: Неотложная хирургия детского возраста. Москва. Мед. 1996.
  2. Bouma G.J. Relationship between cardiac output and cerebral blood flow in patients with intact and with impaired autoregulation/ Bouma G.J., Muizelaar J.P. //J. Neurosurg.,1990. -p.368-374.
  3. Yuthana Udomphorn, MD, William M. Armstead, Ph.D, and Monica S. Vavilala, MD //Cerebral Blood Flow and Autoregulation after Pediatric Traumatic //Pediatr Neurol. 2008 April ; 38(4): 225–234
  4. Bone RC, Balk RA, Cerra FB, Dellinger RP, Fein AM, Knaus WA et al.// Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis.College of Chest Physicians/Society of Critical Care Medicine.Chest 1992;101:1644-55.
  5. Dellinger RP, Levy MM, Carlet JM, Bion J, Parker MM, Jaeschke R et al. Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock:2008. Intensive Care Med 2008;34:17-60.
  6. Luzzani A, Polati E, Dorizzi R, Rungatscher A, Pavan R, Merlini A. Comparison of procalcitonin and C-reactive protein as markers of sepsis. Crit Care Med 2003;31:1737-41.
  7. Meisner M, Adina H, Schmidt J.// Correlation of procalcitonin and C-reactive protein to inflammation, complications, and outcome during the intensive care unit course of multiple-trauma patients//. Crit Care 2006; 10:R1.
  8. Assicot M, Gendrel D, Carsin H, Raymond J, Guilbaud J, Bohuon C. High serum procalcitonin concentrations in patients with sepsis and infection. Lancet. Feb 27; 1993 341(8844):515–518. [PubMed: 8094770]
  9. Tang BM, Eslick GD, Craig JC, McLean AS. Accuracy of procalcitonin for sepsis diagnosis in critically ill patients: systematic review and meta-analysis. Lancet Infect Dis. Mar; 2007 7(3):210–217. [PubMed: 17317602]
  10. Guidelines for the management of severe traumatic brain injury. J Neurotrauma 2007;24(Suppl 1).
  11. Surviving Sepsis Campaign guidelines for management of severe sepsis and septic shock// Crit Care Med 2004 Vol. 32, No. 3
  12. Nick Azarov, Eric B. Milbrandt, Michael R. Pinsky// Could dopamine be a silent killer? //Critical Care 2006, 11: 302
  13. De Backer D1, Biston P, Devriendt J, Madl C, Chochrad D, Aldecoa C, Brasseur A, Defrance P, Gottignies P, Vincent JL// Comparison of dopamine and norepinephrine in the treatment of shock// N Engl J Med 2010; 362:779-789
  14. Gaurav Jain, D. K. Singh// Comparison of phenylephrine and norepinephrine in the management of dopamine-resistant septic shock// Indian J Crit Care Med. 2010 Jan–Mar; 14(1): 29–34.
  15. S Shenoy, A Ganesh, A Rishi, V Doshi, S Lankala, J Molnar, and S Kogilwaimath// Dopamine versus norepinephrine in septic shock: a meta-analysis// Crit Care. 2011; 15(Suppl 1): P89.
  16. Shelley KH, Murray WB, Chang D//Arterial-pulse oximetry loops: a new method of monitoring vascular tone//J Clin Monit 1997, 13:223-8.
  17. Hummler HD, Engelmann A, Pohlandt F, Högel J, Franz AR// Decreased accuracy of pulse oximetry measurements during low perfusion caused by sepsis: Is the perfusion index of any value?// Intensive Care Med 2006, 32:1428-31.
  18. Mowafi HA, Ismail SA, Shafi MA, Al-Ghandi AA//The efficacy of perfusion index as an indicator for intravascular injection of epinephrine-containing epidural test dose in propofolanesthetized adults. //Anesth Analg 2009, 108:549-53.
  19. Aoyagi T, Fuse M, Kobayashi N, Machida K, Miyasaka K// Multiwavelength pulse oximetry: theory for the future.//Anesth Analg 2007, 105(6 Suppl):S53-8.
10 октября 2015

Особенности развития внутрибольничных менингитов у пациентов отделения нейрореанимации

Скачать статью.pdf

Внутрибольничные, или нозокомиальные инфекции (НИ), развивающиеся в непосредственной связи с оказанием медицинской помощи, представляют серьезную проблему для современного здравоохранения, поскольку приводят к дополнительной заболеваемости, повышению летальности, удлинению сроков лечения и увеличению его стоимости [1—3].

В силу объективных причин частота возникновения НИ у пациентов отделений реанимации составляет 20—25%, что существенно выше по сравнению с другими отделениями стационаров [4]. К основным факторам риска относят: более частую необходимость использования инвазивных устройств и методик; непосредственную тяжесть состояния пациентов отделений реанимаций и степень органных повреждений; нарушение иммунного статуса у больных в критических состояниях; необходимость широкого использования антибактериальной терапии, способствующей селекции полирезистентных патогенов — возбудителей НИ [2, 5, 6].

Особенностями оказания медицинской помощи при нейрохирургической патологии являются: нарушение защитных барьеров головного мозга при проведении оперативных вмешательств, их большая продолжительность, а также применение методов инвазивного нейромониторинга. Частота инфекционных осложнений центральной нервной системы (ЦНС) ожидаемо отличается от таковых в стационарах общехирургического профиля.

В результате эпидемиологического наблюдения, проведенного в 2009 г. в отделении реанимации НИИ нейрохирургии им. акад. Н.Н. Бурденко, было выявлено, что в структуре НИ менингиты занимают 3-е место после инфекций нижних дыхательных путей (ИНДП) и мочевыделительных путей (ИМВП).

Основными факторами риска развития внутрибольничных менингитов по данным литературы [7—11], считаются внутрижелудочковое кровоизлияние, краниотомия, раневая ликворея, длительность нейрохирургической операции и наружного вентрикулярного дренирования со значительным повышением риска присоединения инфекции после 5 дней нахождения дренажа. Значимую роль также играют вентрикуло-перитонеальное шунтирование, наличие датчика внутричерепного давления (ВЧД) и повторное нейрохирургическое вмешательство [11].

Цель данного исследования

— установление частоты развития НМ и их клинико-эпидемиологических особенностей у пациентов отделения нейрореанимации.

Материал и методы

Исследование велось в отделении реанимации НИИ нейрохирургии им. акад. Н.Н. Бурденко с октября 2010 г. по январь 2014 г. В проспективное наблюдение включены все пациенты, госпитализированные в отделение реанимации на период более 48 ч. Ежедневно проводили регистрацию особенностей соматического, неврологического статуса больных, признаков инфекционного процесса (системной воспалительной реакции) и факторов риска, таких как наличие наружного вентрикулярного дренажа, датчика ВЧД, ИВЛ, центрального венозного катетера и др. [3].

Результаты вносили в специально разработанную базу данных, интегрированную в электронную историю болезни пациента. Для диагностики инфекций ЦНС (ИЦНС) использовали общепринятые определения случаев (Definitions of Nosocomial Infections), разработанные Центрами по контролю заболеваемости США (Centers for Disease Control) [12].

За указанный период всего в ОРИТ были госпитализированы 8062 пациента. Осложненное течение заболевания, потребовавшее пребывания в реанимации более 48 ч, наблюдалось у 1153 (14,3%) больных. Информация об этих пациентах была систематизирована и внесена в базу данных. Клинический диагноз «менингит» выставлен 146 пациентам, что составило 12,6±1,0% (доверительный интервал 10,74—14,66). Критериями такого диагноза являлись: нейтрофильный цитоз ликвора (количество клеток в камере) более 150/3, уровень глюкозы ликвора более 50% от глюкозы крови, высев патогена из ликвора, признаки системной воспалительной реакции (SIRS-синдром), появление менингеальных симптомов, развитие отрицательной динамики в неврологическом статусе [12].

Возраст в группе больных с менингитами колебался от 4 мес до 88 лет (средний возраст 37,6 года). Доля пациентов детского возраста (до 18 лет) была одинаковой в группах как заболевших, так и незаболевших больных.

Для большинства пациентов с менингитами была характерна супратенториальная локализация патологического процесса (72,8±3,7%). У 20,4% обследованных наблюдалась патология задней черепной ямки. Распространение патологического процесса на супра- и субтенториальные области отмечалось у 5,4% пациентов, и только 1,4% больных с менингитами имели спинальный уровень повреждения (грудной отдел позвоночника) (рис. 1).

Рис. 1. Распределение наблюдений по локализации нейрохирургической патологии в группе больных с менингитами, %.

Примечание. ЗЧЯ — задняя черепная ямка. Структура нейрохирургической патологии у пациентов с менингитами была представлена: опухолями различной локализации — 67,3%, черепно-мозговыми травмами (ЧМТ) — 13,6%, артериальными аневризмами и артериовенозными мальформациями (АВМ) сосудов головного мозга — 11,6% (рис. 2). Доля пациентов с острой ЧМТ в обеих группах была сопоставимой.

Рис. 2. Распределение больных по характеру основного заболевания, %.

Примечание. Здесь и на рис. 3: АА — артериальные аневризмы головного мозга, АМВ — артериовенозные мальформации головного мозга, ВМГ — внутримозговые гематомы, ОНМК — острое нарушение мозгового кровообращения. По тяжести общего состояния на момент госпитализации в НИИ нейрохирургии им. акад. Н.Н. Бурденко пациенты распределились следующим образом: 34 (23,1%) больных поступили с максимальной степенью инвалидизации (40 баллов и ниже по шкале Карновского), 92 (62,6%) — в компенсированном состоянии. Для оценки прогноза больных с длительными сроками наблюдения использовался индекс коморбидности Charlson [13], отражающий сопутствующую соматическую патологию и возраст. У пациентов с НМ он варьировал от 0 до 10 баллов, составляя в среднем 3 балла.

Прооперированы 139 пациентов (94,6±1,9%). У 90 (64,7%) пациентов удалены опухоли головного мозга различной локализации, при этом у 1 больного опухолевый процесс сочетался с сосудистой патологией — множественными артериальными аневризмами. Иссечение АВМ и клипирование интракраниальных аневризм осуществили у 12 (8,6%) больных. Декомпрессивная трепанация как основное нейрохирургическое вмешательство (в основном при ЧМТ) выполнена в 6,5% случаев. Реже в группе пациентов с менингитами проводились эндоскопические, эндоваскулярные и шунтирующие операции (рис. 3).

Рис. 3. Распределение больных по характеру оперативного вмешательства, %.

В структуре осложнений в отделении реанимации преобладали: раневая ликворея (34±3,9%), диастаз краев раны (17,7±3,1), гематомы в зоне оперативного вмешательства, по поводу последних у 18 пациентов (12,2±2,7%) была выполнена ревизия операционной раны.

Сроки нахождения больных с менингитами в ОРИТ составили от 1 до 167 дней (в среднем 40 койко-дней), при этом повторное поступление в реанимацию наблюдалось у 57 пациентов (38,8±4,0%).

Для обработки данных использованы методы параметрической и непараметрической статистики, дисперсионный анализ, анализ частот сопряженности, в основном — статистический пакет Statistica v. 6 и комплекс программ по книге Стентона Гланца «Медико-математическая статистика»[14].

Результаты и обсуждение

Частота развития менингитов в группе осложненных нейрохирургических пациентов за 3 года составила 12,6±1,0% (ДИ 10,74—14,66), летальность в группе больных с менингитами составила 31,5±3,8%.

Этиология менингита установлена в 89 (61,0±4,0%) из 146 случаев. Абсолютное число выделенных патогенов (грамположительных, грамотрицательных и грибов рода Candida) в группе больных с менингитами установленной этиологии равнялось 103 (см. таблицу). Превалирующими возбудителями в нашем исследовании оказались: грамположительные кокки, в том числе коагулазонегативный стафилококк (CoNS) (33,0±4,6% от числа общих патогенов), а также грамотрицательные бактерии (32,0±4,6%). При этом доля Acinetobacter baumannii в качестве этиологического агента НМ составила 21,3±4,0%.

Структура патогенов, выделенных из материала от больных с гнойными менингитами

При анализе групп заболевших и незаболевших пациентов выявлено, что средний возраст (37,6 года) больных с инфекцией ЦНС был существенно меньше возраста пациентов без инфекции ЦНС (42,4 года). В группе пациентов без менингита распределение по полу было приблизительно одинаковым, в отличие от пациентов с менингитом, где было достоверно больше мужчин. Индекс Charlson оказался меньше в исследуемой группе (3 балла vs. 3,4 балла) в сравнении с контрольной. Больные с менингитами характеризовались более длительной госпитализацией в ОРИТ (на 22,9 дня дольше), пролонгированной ИВЛ (на 21,4 дня больше), необходимостью в центральном венозном доступе (на 24,5 дня), катетеризации мочевого пузыря, питании через назогастральный зонд, а также более продолжительным курсом антибактериальной терапии (на 20,1 дня). В группе заболевших НМ чаще использовали инвазивный мониторинг системной гемодинамики (42,2%) по сравнению с группой незаболевших (29,7%; р<0,003). Частота мониторинга ВЧД не имела отличий в этих двух группах пациентов. Среди больных с менингитами в сравнении с незаболевшими чаще выявляли инфекции кровотока (14,8% vs. 4,9%; р<0,000), дыхательной (55% vs. 35,6%; р<0,000) и мочевыделительной систем (56,4% vs. 30,9%; р<0,000). Установлены достоверные отличия в группах заболевших и незаболевших: в более частом использовании наружного вентрикулярного дренирования (72,5 и 26,1% соответственно; р<0,000); числе повторных операций (64,7 и 36,3%; р<0,000); суммарном времени, проведенном пациентами в операционной (417,3 и 337,5 мин соответственно; р<0,000).

Таким образом, факторы риска развития НМ условно можно разделить на внутренние и внешние. К первым относятся: возраст, пол, тяжесть состояния больного на момент манифестации у него нейрохирургического заболевания и характер данного заболевания. Основными внешними факторами риска, по данным литературы [7—11, 15], считают наружное вентрикулярное дренирование, шунтирующие операции, развитие ликвореи, наличие датчика ВЧД и повторное нейрохирургическое вмешательство.

В нашем исследовании заболевшие пациенты отличались более молодым возрастом (несмотря на то что доля детей в обеих группах статистически не различалась) и низким индексом коморбидности Charlson, что может косвенно указывать на меньшую сопутствующую патологию у этой категории больных. Аналогичные данные приведены в зарубежных работах по НМ [16]. При этом заболевшие пациенты более длительно находились в ОРИТ с применением соответствующих инвазивных устройств, в том числе пролонгированной ИВЛ, и достоверно чаще подвергались нейрохирургическим вмешательствам (наружное дренирование, повторные операции). Примечательно, что мы не получили убедительного влияния инвазивного мониторинга ВЧД на частоту развития менингитов.

Таким образом, в этиологии развития НМ у пациентов отделения реанимации доказанным оказалось превалирование внешних факторов риска, что может говорить об экзогенном характере инфицирования. Наличие инфекций другой локализации можно считать дополнительным фактором тяжести состояния больных с менингитами.

Заключение

Менингиты в нейрохирургии представляют серьезную проблему, приводя к удлинению сроков лечения, увеличению потребности в антибактериальных препаратах и существенно ухудшая прогноз заболевания. К факторам риска развития НМ у больных в ОРИТ можно отнести наружное вентрикулярное дренирование, повторные операции, длительность нахождения в операционной, а также наличие у пациентов инфекций другой локализации.

Комментарий

В статье проведен анализ влияния внутренних (возраст, пол, исходная тяжесть состояния больного) и внешних (наружное вентрикулярное дренирование, шунтирующие операции, краниотомии, ликворея, повторные нейрохирургические вмешательства) факторов риска на частоту развития внутрибольничных менингитов у пациентов отделения нейрореанимации. Было доказано преобладание внешних факторов риска, что говорит о преимущественно экзогенном характере инфицирования больных.

Актуальность статьи не вызывает сомнения, поскольку менингиты занимают третье место после инфекций нижних дыхательных путей и мочевыделительных путей в структуре НИ в отделениях нейрохирургического профиля. Развитие НМ определяет большую длительность госпитализации в ОРИТ и значительно увеличивает сроки стационарного лечения.

Особенностью подхода авторов к сбору информации для исследования является проведение проспективного обсервационного исследования с использованием значительной базы данных, включающей 1153 пациента. Примечательно, что диагностика внутрибольничных инфекционных осложнений со стороны центральной нервной системы проводилась с применением наиболее современных подходов, были использованы стандартные определения случаев (Definitions of Nosocomial Infections, CDC, США).

Научная статья авторов Н.В. Курдюмовой, Г.В. Данилова, О.Н. Ершовой, И.А. Савина, Е.Ю. Соколовой, И.А. Александровой, М.А. Шифрина «Особенности развития внутрибольничных менингитов у пациентов отделения нейрореанимации» выполнена на высоком научном уровне и содержит выводы, представляющие практический интерес. Источники, цитируемые в настоящей статье, отражают современную точку зрения на исследуемую проблему.

В.В. Кулабухов (Москва)

Список литературы:

  1. Козлов Р.С. Нозокомиальные инфекции: эпидемиология, патогенез, профилактика, контроль. Клиническая микробиология и антимикробная химиотерапия. 2000;2(1):16-30.
  2. Основные компоненты для программ профилактики инфекций и инфекционного контроля. Материалы второго совещания неформальной сети по профилактике инфекций и инфекционному контролю в здравоохранении. 26—27 июня 2008 г. Женева, Швейцария. Доступно по: http://apps.who.int/medcinedocs/documents/s16342e/s16342e.pdf. Ссылка активна на 25.03.2015.
  3. Эпидемиологическое наблюдение: принципы организации и методы проведения. Под ред. Л.П. Зуевой. СПб. 2004;12-14.
  4. Beer R, Pfausler B, Schmutzhard E. Infections intracranial complications in the neuro-ICU patient population. Current Opinion in Critical Care. 2010;16:117-122. doi:10.1097/mcc.0b013e328338cb5f.
  5. Leistner R, Schröder C, Geffers C, Breier A.-C, Gastmeier P, Behnke M. Regional distribution of nosocomial infections due to ESBL-positive Enterobacteriaceae in Germany: data from the German National Reference Center for the Surveillance of Nosocomial Infections (KISS). Clinical Microbiology and Infection. 2014. doi:10.1016/j.cmi.2014.07.015.
  6. Kim B-N, Peleg AY, Lodise TP, Lipman J, Li J, Nation R, Paterson DL. Management of meningitis due to antibiotic-resistant Acinetobacter species. The Lancet Infectious Diseases. 2009;9(4):245-255. doi:10.1016/s1473-3099(09)70055-6.
  7. Korinek A-M, Baugnon T, Golmard J-L, van Effenterre R, Coriat P, Puybasset L. Risk Factors for Adult Nosocomial Meningitis after Craniotomy: Role of Antibiotic Prophylaxis. Neurosurgery. 2006;59(1):126-133. doi:10.1227/01.neu.0000220477.47323.92.
  8. McClelland S, Hall WA. Postoperative Central Nervous System Infection: Incidence and Associated Factors in 2111 Neurosurgical Procedures. Clinical Infectious Diseases. 2007;45(1):55-59. doi:10.1086/518580.
  9. Lozier AP, Sciacca RR, Romagnoli MF, Connolly ES. Ventriculostomy-related infections. Neurosurgery. 2008;62:688-700. doi:10.1227/01.neu.0000316273.35833.7c.
  10. Sonabend AM, Korenfeld Y, Crisman C, Badjatia N, Mayer SA, Connolly ES. Prevention of Ventriculostomy-Related Infections with Prophylactic Antibiotics and Antibiotic-Coated External Ventricular Drains: A Systematic Review. Neurosurgery. 2011;68:996-1005. doi:10.1227/neu.0b013e3182096d84.
  11. Van de Beek D, Drake JM, Tunkel AR. Nosocomial bacterial meningitis. N Engl J Med. 2010;362(2):146-154. doi:10.1056/nejmra0804573.
  12. Horan TC, Andrus M, Dudeck MA. CDC/NHSN surveillance definition of health care–associated infection and criteria for specific types of infections in the acute care setting. American Journal of Infection Control. 2008;36(5):309-332. doi:10.1016/j.ajic.2008.03.002.
  13. Charlson ME, Pompei P, Ales KL, MacKenzie CR. A new method of classifying prognostic comorbidity in longitudinal studies: Development and validation. Journal of Chronic Diseases. 1987;40(5):373-383. doi:10.1016/0021-9681(87)90171-8.
  14. Гланц C. Медико-биологическая статистика. Пер. с англ. М.: Практика. 1999.
  15. Zhan R, Zhu Y, Shen Y, Shen J, Tong Y, Yu H, Wen L. Post-operative central nervous system infections after cranial surgery in China: incidence, causative agents, and risk factors in 1,470 patients. European Journal of Clinical Microbiology & Infectious Diseases. 2013;33(5):861-866. doi:10.1007/s10096-013-2026-2.
  16. Williamson RA, Phillips-Bute BG, McDonagh DL, Gray MC, Zomorodi AR, Olson DM, James ML. Predictors of extraventricular drain–associated bacterial ventriculitis. Journal of Critical Care. 2014;29(1):77-82. doi:10.1016/j.jcrc.2013.08.012.
Вопросы нейрохирургии им. Н.Н. Бурденко. 2015. Т. 79. № 3. С. 55-59.
26 июля 2015

Оценка контаминации емкостей увлажнителей испарительного типа при длительной ИВЛ

Скачать статью.pdf

ФГБНУ НИИ нейрохирургии им. акад. Н.Н. Бурденко

Введение

У пациентов, находящихся на ИВЛ, принципиально важным является обеспечение адекватного увлажнения дыхательной смеси. В настоящее время существует два основных способа увлажнения дыхательной смеси: активное увлажнение с использованием увлажнителей испарительного типа и пассивное увлажнение с использованием влагообменных фильтров. При использовании увлажнителей испарительного типа вдыхаемая дыхательная смесь проходит через подогреваемый резервуар с дистиллированной водой, встроенный в инспираторную часть дыхательного контура. Использование подогреваемого провода в инспираторном колене контура позволяет предотвратить охлаждение увлажненной дыхательной смеси и образование конденсата. При использовании и тепловлагообменных фильтров (ТВО), во время выдоха пациента происходит задержка выдыхаемых паров воды, которые во время вдоха возвращаются в дыхательные пути пациента. В настоящее время нет единого мнения о том, какой из вариантов увлажнения является предпочтительным. Использование влагообменных фильтров сопряжено с риском недостаточного увлажнения дыхательной смеси, что приводит к высушиванию слизистой дыхательных путей, формированию корок, обтурации эндотрахеальной трубки вязкой мокротой. В современных руководствах по увлажнению дыхательной смеси при ИВЛ выставляется более 10 противопоказаний для использования тепло-влагообменных фильтров [9] – это вязкая и/или кровянистая мокрота, обильная мокрота, использование малых или больших дыхательных объемов, ХОБЛ, ОРДС, необходимость уменьшать добавленное мертвое пространство дыхательного контура, сложности с триггированием аппаратного вдоха. В данном руководстве и в современных исследованиях [11] посвященных оценке частоты развития вентилятор-ассоциированной пневмонии(ВАП) говорится, что частота ВАП при использовании увлажнителей испарительного типа достоверно ниже. В то же время ряд авторов описывает риск бактериальной контаминации водного резервуара увлажнителя и, соответственно, риск развития инфекции верхних дыхательных путей при использовании увлажнителей испарительного типа [20]. Как дополнительный аргумент сторонники использования ТВО говорят о дешевизне данного приспособления по сравнению с использованием увлажнителей испарительного типа. Работы авторов, говорящих о более высоком риске развития вентилятор- ассоциированной пневмонии при использовании активного увлажнения противоречит нашему опыту. В нашем отделении мы используем увлажнители испарительного типа при проведении длительной (иногда более года) ИВЛ и не отмечаем частого развития инфекции верхних дыхательных путей, в то время как при использовании влагообменных фильтров даже в течение непродолжительного периода времени мы часто видим развитие трахеобронхитов, верифицируемых бронхоскопически, и пневмоний.

Цель и задачи исследования

Оценка риска колонизации водных резервуаров увлажнителей испарительного типа Fisher-Paykel при проведении длительной ИВЛ.

Сопоставление флоры, полученной из банки увлажнителя с микрофлорой ВДП пациентов

Определение безопасности регулярной замены контура аппарата ИВЛ с периодичностью 5 дней с точки зрения колонизации банки увлажнителя.

Материалы и методы

В исследование были включены 5 пациентов отделения реанимации, находящихся на ИВЛ от 14 до 95 дней с использованием увлажнителя испарительного типа («Fisher-Paykel»), средняя длительность вентиляции до начала исследования составила 41±15,9 дня. У всех пациентов лабораторно были подтверждены высевание из дыхательных путей патогенной микрофлоры. В первый день исследования осуществлялась замена дыхательного контура и испарительной емкости увлажнителя на стерильные, с последующим капельным заполнением емкости дистиллированной стерильной водой из одноразовых полиуретановых пакетов, вместимостью 1000мл; так же выполнялся бронхо- альвеолярный лаваж, с дальнейшим количественным и качественным анализом высеваемой микрофлоры. В последующие 4 дня ежедневно отбирались пробы воды из увлажнителя (10 мл) для количественного и качественного анализа возможной высеваемой микрофлоры. На пятый день исследования перед заменой дыхательного контура повторялся бронхоальвеолярный лаваж для оценки контаминации дыхательных путей и возможного изменения микрофлоры респираторной системы пациента. Забор проб производился следующим образом: пациент переводился на ИВЛ мешком АМБУ , респиратор переключался в ждущий режим. В стерильных условиях производилась дисконнекция контура от емкости увлажнителя, стерильным шприцом с использованием стерильного удлинителя инфузионной линии осуществлялся одномоментный забор пробы воды в объеме 10 мл, после чего производилось герметичное соединение дыхательного контура с емкостью увлажнителя. Пациент подключался к респиратору и продолжалась ИВЛ в прежнем режиме с предустановленными параметрами. Необходимо отметить, что перед дисконнекцией и присоединением дыхательного контура к испарительной емкости увлажнителя, никакой обработки поверхностей данных частей аппарата ИВЛ антисептическими средствами не производилось. После забора проба не позднее чем через 15 мин доставлялась в лабораторию микробиологической диагностики, где полученная вода высевалась на питательные среды. Всего было отобрано и исследовано 20 проб воды (по 4 пробы воды на каждого пациента) и выполнено 10 исследований бронхоальвеолярного лаважа. Пробы воды высевались на универсальную жидкую полуагаризованную среду Китта- Тароцци (1 мл воды на 10 мл среды), после чего термировались при температуре 37С в течение 10 Суток. После термирования учитывался результат по наличию/отсутствию роста флоры в каждой пробе. От каждой пробы БАЛ отбиралось по 1 мл жидкости и производился высев на среду Китта-Тароцци с последующим качественным анализом высеваемой флоры. Для количественного анализа отбиралось по 1 мл каждой пробы и проводился высев на чашки с кровяным агаром. Чашки термировались при 37С в течение 24 часов, после чего проводился учет результатов посевов.

Результаты

Средняя длительность ИВЛ составила 41±15,9 дня. Во всех наблюдениях использовались закрытые системы для санации трахеи. Системную антибактериальную терапию на момент начала исследования получал один пациент. В посеве БАЛ до начала мониторинга у 5 пациентов выделено 7 патогенов: Acinetobacter baumannii – 3 шт., Klebsiella pneumonia – 2 шт., Pseudomonas aeruginosa и Candida albicans по 1 шт. в концентрации 103 КОЕ/мл . Существенных изменений в составе микрофлоры дыхательных путей за время мониторинга у пациентов не произошло. Одновременно все пробы воды, ежедневно отбираемые из работающего увлажнителя, в течение всего периода наблюдения оставались стерильными.

Обсуждение

По данным части авторов использование увлажнителей испарительного типа приводит к росту колонизации контура аппаратов ИВЛ. Так, по данным Antoni Torres et al. (Hospital Clinic de Barselona) дыхательные контуры аппаратов ИВЛ крайне быстро колонизируются микроорганизмами, а наличие конденсата в дыхательных контурах приводит к росту числа бактериальных клеток. Большое число проспективных, рандомизированных исследований демонстрируют нам, что частая замена дыхательных контуров не приводит к снижению случаев вентилято- ассоциированных пневмоний. Затекание конденсата в нижние дыхательные пути и в контурные небулайзеры так же приводит к росту случаев нозокомиальных инфекций дыхательной системы.[16] Cook et al, Hess et al, и Kola et al, представили мета-анализы исследований, посвященных сравнению тепло- влагообменных фильтров и увлажнителей испарительного типа при проведении ИВЛ. По результатам выполненных работ отмечалось повышение риска развития вентилятор- ассоциированных пневмоний при ИВЛ с использованием увлажнителей активного типа. Связывалось это с колонизацией контура аппарата ИВЛ и наличием конденсата внутри просвета контура [10, 13, 14]. В исследовании Kranabetter et al, посвященному сравнению тепло- влагообменных фильтров и активных увлажнителей без системы подогрева дыхательной смеси внутри контура. В первую группу вошло 1887, у которых ИВЛ проводилась с использованием увлажнителей активного типа, во вторую группу было включено 1698 пациентов на ИВЛ с использованием тепло- влагообменных фильтров. Все пациенты находились в отделении интенсивной терапии хирургической клиники, и диагностика вентилятор - ассоциированной пневмонии осуществлялась с использованием общеклинических критериев. В течение 42 месяцев было диагностировано 99 случаев вентилятор- ассоциированной пневмонии. Частота ВАП в группе увлажнителей активного типа была 13,5 дней на 1000 ИВЛ- дней, в группе тепло- влагообменных фильтров 9,6 на 1000 ИВЛ- дней, что в процентном соотношении составило 32,3% и 22,4% на 1000 пациентов соответственно. Различия в числе ВАП среди групп (р=0,068) и частоте ВАП на 1000 ИВЛ- дней не были статистически достоверны. Когда Kranabetter et al проанализировали число ВАП среди пациентов, находившихся на ИВЛ более 2 суток (n=540), различия стали статистически достоверными (р=0,012) [12]. Ряд авторов имеет отличное мнение на проблему увлажнения дыхательной смеси. L. Lorente et al. (Hospital Universitario de Canarias) провели исследование, в которое было включено 104 пациента находящихся на ИВЛ более 5 дней, из которых 53 пациента вентилировались при помощи тепло- влагообменных фильтров и 51 с использованием активных увлажнителей. ВАП была диагностирована у 8 из 51 (15,69) пациента в группе активных увлажнителей, а в группе тепло- влагообменных фильтров диагноз ВАП был установлен у 21 из 53 (39,62%) (р=0,006). Среднее время ВАП в группе активного увлажнения было 20 дней, (95% доверительный интервал 13,34-26,66) и 42 дня в группе тепло- влагообменных фильтров (95% доверительный интервал, 35,62-48,37), р < 0,001. Исследователи пришли к выводу, что при длительной ИВЛ предпочтительнее использовать активные увлажнители чем тепло- влагообменные фильтры. Необходимо отметить, что в данном исследовании авторы использовали активные увлажнители испарительного типа с капельным заполнением емкости водой, контуры с термоэлементами для поддержания целевой температуры увлажненной дыхательной смеси и водяными ловушками в отводящем колене контура, закрытые системы для санации трахеи. Так же всем пациента производилась обработка полости рта раствором хлоргексидина [11]. В нашем отделении так же используются все вышеперечисленные методы борьбы с распространением микроорганизмов внутри дыхательного контура пациента, дополнительно к этому мы используем трахеостомические трубки с каналом для санации надманжеточного пространства (санации осуществляются при необходимости но не менее 4 раз в сутки). Замена дыхательного контура мы осуществляем каждые 5 суток. Проведенное нами исследование доказало, что при соблюдении правил асептики и антисептики при работе с увлажнителями испарительного типа не отмечается колонизация испарительных емкостей на всем периоде работы дыхательного контура.

Выводы

Периодичность замены дыхательного контура аппарата ИВЛ в 5 дней является безопасной и не приводит к колонизации банки увлажнителя.

Использование увлажнителей испарительного типа не приводит к смене микрофлоры верхних дыхательных путей пациента.

Список литературы

1.Дж. Эдвард Морган мл., Мэгид С. Михаил. Клиническая анестезиология. Книга первая. Издательство: Бином, 2008 г.

2.Практическое руководство по анестезиологии /Под ред. В.В. Лихванцева. — М.: Медицинское информационное агентство, 1998 г.

3.Эйткенхед А.Р., Смит Г., "Руководство по анестезиологиии" в 2-х томах  (под. ред.) перевод Дудникова С.Ф., М. Медицина 1999 г.

4.Пол Д. Барах, Брюс Ф. Куллен, Роберт К. Стэлтинг; Клиническая анестезиология. М. 2007 г.

5.Горячев А.С., Савин И.А.: Основы ИВЛ издание 4-е: - М., ООО «МД», 2014

6.Luchetti V, Stuani A, Castelli G, Marraro G. Comparison of three different humidification systems during mechanical ventilation/ Minerva Anestesiol. 1998 Mar; 64(3): 75-81.

7.Jiangna Han MD PhD, Yaping Liu RRT. Effect of Ventilator Circuit Changes on Ventilator- Associated Pneumonia: A Systematic Review and Meta- analysis. Respiratory Care April 2010 Vol 55 No 4.

8.Ruben D Restrepo MD RRT FAARC and Brian K Walsh RRT-NPS FAARC. Humidification During Invasive and Noninvasive Mechanical Ventilation: 2012. Respir Care 2012;57(5):782-788.

9.D. Hess. Infection control in the intensive care unit. Minerva anestesiol 2002;68:356-9.

10.Leonardo Lorente, Maria Lecuona, Alejandro Jimenes, Maria L Mora and Antonio Serra. Ventilator- associated pneumonia using a heater humidifier or a heat and moisture exanger: a randomized controlled trial [ISRCTN88724583]. Critical Care 2006, 10:R116

11.Cranabetter R, Leier M, Kammermeier D, Just HM, Heuser D: The effects of active and passive humidification on ventilaton- associated nosocomial pneumonia. Anaesthesist 2004, 53:29-35.

12.Cook d, De Jongle B, Brochard L, Brun- Buisson C: Influence of airway management on ventilator- associated pneumonia: evidence from randomized trials. JAMA 1998, 279:781-787

13.Kola A, Eckmanns T, Gastmeier P: Efficacy of heat and moisture exangers in preventing ventilator- associated pneumonia: meta- analysis of randomized controlled trials. Intensive Care Med 2005, 31:5-11.

14.Hess D, Ph.D., R.R.T., Burns E, R.R.T., Romagnoli D, M.S., R.R.T., Kacmarek R. M., R.R.T.: Weekly Ventilator Circuit Changes. Anaestesiology, V 82, No 4, Apr 1995.

  1. Torres A, Ewig S, Lode H, Carlet J; European HAP working group. Defining, treating and preventing hospital acquired pneumonia: European perspective. Intensive Care Med. 2009 Jan;35(1):9-29.

16.Dodek P, Keenan S, Cook D, Heyland D, Jacka M, Hand L, Muscedere J, Foster D, Mehta N, Hall R, Brun-Buisson C; Canadian Critical Care Trials Group; Canadian Critical Care Society.: Evidence-based clinical practice guideline for the prevention of ventilator-associated pneumonia. Ann Intern Med. 2004 Aug 17;141(4):305-13.

17.Kelly M, Gillies D, Todd DA, Lockwood C.: Heated humidification versus heat and moisture exchangers for ventilated adults and children. Anesth Analg. 2010 Oct;111(4):1072.

18.Kollef M H.: The Prevention of Ventilator Associated Pneumonia.

19.Branson R D MSc, R.R.T. FAARC: The Ventilator Circuit and Ventilator Associated Pneumonia. Respiratory Care June 2005 Vol 50 No 6.

Сборник материалов "III Съезда забайкальского общества анестезиологов-реаниматологов" 29-30 апреля 2015 Чита (стр 20-27)
21 июня 2015

Использование кортикальных ответов ССВП для выявления нарушений глотания у пациентов в раннем послеоперационном периоде после оперативного вмешательства на структурах ЗЧЯ

Скачать статью.pdf

НИИ нейрохирургии им. акад. Н.Н. Бурденко

Введение

Одной из основных задач раннего послеоперационного периода при нейрохирургических вмешательствах на структурах ЗЧЯ является своевременное и безопасное прекращение ИВЛ и экстубация больного. Принятие решения о безопасной экстубации пациента после операции удаления опухолей задней черепной ямки (ЗЧЯ) основывается на оценке следующих критериев.

  1. Восстановление бодрствования и способности отчетливого выполнения инструкций.

  2. Восстановление адекватного самостоятельного дыхания.

  3. Восстановление функции гортаноглотки (оценка качества глотания и необходимости протекции от аспирации).

Две первые составляющие являются универсальными для всех пациентов и подробно освещены в протоколах и рекомендациях по анестезиологии [1-4]. Оценка сохранности функции гортаноглотки, качества глотания и необходимости протекции от аспирации у интубированного пациента представляют сложность. При разных вариантах поражения ствола головного мозга выявляется весь спектр нарушений глотания. Для грубых вариантов бульбарных нарушений характерно обилие секрета в ротоглотке, истечение слюны изо рта, через наружные носовые ходы при параличе мышц мягкого неба. При выраженных нарушениях глотания больной обычно не может выдвинуть язык за линию зубов. Отсутствие кашля на введение санационного катетера свидетельствует о снижении чувствительности слизистой оболочки трахеи. При различном уровне поражения ствола головного мозга возможны нарушения открывания рта от тризма до вялого отвисания нижней челюсти. В качестве клинической оценки функции гортаноглотки мы используем алгоритм, разработанный в нашем отделении реанимации и ИТ НИИ Нейрохирургии им. Н.Н. Бурденко [5]. Данный алгоритм, используемый нами в клинической практике, позволяет с высокой вероятностью выявлять пациентов с нарушенной функцией глотания после восстановления сознания и способности пациета сотрудничать с врачом, проводящим осмотр. Недостатками теста клинической оценки готовности пациента к экстубации является его субъективный характер и невозможность его проведения в условиях поверхностной седации. Нередко у пациентов, после удаления опухолей ЗЧЯ пробуждение сопровождается психомоторным возбуждением без восстановления ясного сознания. Это сочетается с артериальной гипертензией, бурной реакцией на эндотрахеальную трубку, борьбой с респиратором, что может привести к формированию послеоперационных осложнений. В связи с этим, пациенты могут потребовать продления седации различной глубины, что делает применение теста клинической оценки готовности к экстубации невозможным. Очевидно, что у этой группы больных с опухолями ЗЧЯ необходимы вспомогательные методы оценки готовности пациента к экстубации.

В современной литературе достаточно подробно освещены вопросы, связанные с мониторингом функций ствола головного мозга методом соматосенсорных вызванных потенциалов (ССВП) во время оперативного вмешательства на ЗЧЯ с целью снижения риска его травматизации [6-12]. Исследование ССВП может проводиться на фоне седации [15,16], и не вызывает изменений параметров гемодинамики, ВЧД. Однако исследований функций ствола головного мозга методом ССВП в раннем послеоперационном периоде в доступной нам литературе не найдено.

Целью нашего исследования было выявление изменений кортикальных ответов соматосенсорных вызванных потенциалов у пациентов с нарушениями глотания после операции по удалению опухолей ЗЧЯ. В качестве теста для клинической оценки нарушений глотания мы использовали шкалу оценки нарушений глотания у интубированного пациента с повреждением ствола головного мозга. Мы провели сопоставление кортикальных ответов ССВП с результатами теста оценки нарушений глотания у интубированного пациента и клиническим результатом экстубации.

Материалы и методы исследования

В исследование были включены 17 пациентов (6 мужчин, 11 женщин) с опухолями задней черепной ямки в возрасте от 21 до 81 лет (54 ±16 лет). Морфологически опухоли распределились следующим образом: невринома слухового нерва - 9 пациентов, менингиома задней черепной ямки 7, кавернома среднего мозга 1. Опухоли локализовались преимущественно справа у 9 пациентов, слева у 7 пациентов, медианно у 1 пациента. Всем пациентам были исследованы ССВП до операции по 2 идентичных теста слева и справа. Признаком удовлетворительно проведенного исследования считалось изменение латентности и амплитуды пиков N9, N13, N20 не более чем на 5% в каждом из идентичных тестов. Повторное исследование ССВП проводилось сразу после поступления пациента в палату пробуждения отделения реанимации и ИТ после оперативного вмешательства. Фиксировалось время поступления в палату пробуждения; проводилась качественная оценка сознания пациента – ему предлагалось выполнить инструкции (пожимание рук, движения в ногах, движения головы), время, когда пациент смог их выполнить также фиксировалось. После восстановления сознания проводился неврологический осмотр. К этому времени реаниматолог оценивал клинические критерии готовности пациента к экстубации, не зная результатов ССВП, по стандартной схеме - уровень бодрствования, степень остаточной миорелаксации, качество сознания (возможность выполнять инструкции врача), сохранность стволовых рефлексов насколько это было возможно. Оценка нарушений глотания у интубированного пациента проводилась по следующей схеме:

1.Способность больного широко открывать и закрывать рот;

2.Способность глотать слюну, скапливающуюся во рту, объем движения щитовидного хряща и напряжение диафрагмы рта;

3.Наличие и объем секрета в ротоглотке;

4.Объем движений языка;

5.Реакция больного на интубационную трубку;

6.Реакция на санацию трахеи.

После клинического теста врач принимал решение о проведении экстубации трахеи или необходимости дальнейшего проведения ИВЛ и продлении седации. Фиксировалось время выполнения экстубации.

ССВП записывались прибором «Нейромиан» Медиком МТД по стандартной схеме [15]. Активные электроды располагались на скальпе в точках С'3, C'4 (примерно на 2 см кзади и на 1 см ниже стандартных отведений С3, С4 по международной схеме 10–20 %), в области VII шейного позвонка и в точке Эрба ипсилатерально стороне стимуляции. В качестве референтных электродов использовался цефалический электрод (Fz), нулевой электрод - на предплечье. Подэлектродное сопротивление не превышало 5 КОм, разница подэлектродных сопротивлений составляла не более 2 КОм. Стимуляционная колодка крепилась в проекции n. medianus на запястье. Параметры стимуляции: длительность стимула 0,1 мс, сила стимула от 9 до 18 мА, а критериями адекватной стимуляции считалось движение большого пальца, частота стимуляции 5,1 Гц, эпоха анализа 50 мс, порог режекции не превышал 60 мВ. Число усреднений n=2000-4000.

Выделялись типичные компоненты ССВП на скальповом (на стороне конталатеральной стимуляции n.medianus) (N20, P23), шейном (N13) и периферическом (N9) уровнях, с последующим анализом абсолютных латентностей компонентов N20 и N13, межпикового интервала (МПИ) N13-N20, который отражает центральное время проведения и амплитуды компонента N20. Значения выше указанных параметров заносились в индивидуальные электронные таблицы и затем выбирались лучшие значения показателей. Анализ абсолютных и среднестатистических значений временных и амплитудных параметров компонентов ССВП не позволяет однозначно интерпретировать полученные данные. Нами был разработан индекс асимметрии ответов (ИАО), который является относительным показателем, суть которого заключается в сравнении значения латентностей компонентов N13 и N20, МПИ N13-N20 и амплитуды компонента N20, зарегистрированных при стимуляции n.medianus dex и n.medianus sin. Индекс вычислялся по формуле |x-y/(x+y)|, где x - значение соответствующего параметра при правосторонней стимуляции, y - значение аналогичного параметра при левосторонной стимуляции. Модуль исключает ошибки, связанные с возможностью получения отрицательных показателей при расчете среднего у противоположных по знаку значений. Значения ИАО, близкие к нулю, указвают на симметричность ответов ССВП, полученных при стимуляции n.medianus с разных сторон. Значения ИАО, близкие к единице указывают на выраженную ассиметрию ответов между сторонами стимуляции, что является важным показателем отклонений [15]. Индекс асимметрии ответов вычислялся для всех указанных параметров до и после операции. Статистическая обработка данных производилась в программе Statistika 7.

Анализ результатов и их обсуждение

Ни у одного из пациентов в дооперационном периоде по данным ССВП не выявлено увеличения абсолютных латентностей компонентов N13 и N20, выходящих за пределы референсных значений, абсолютные латентности данных компонентов при стимуляции справа и слева статистически значимо не различались. Центральное время проведения у всех пациентов в дооперационном периоде не превышало 7,15 мс (в среднем 5,78 мс) и статистически значимо не различалось при стимуляции справа и слева (p=0,19). Вариабельность амплитуды пика N20 составила от 0,15 до 2,43 мкВ.

16 пациентов, вошедших в исследование до оперативного вмешательства, были в ясном сознании, 1 - в легком оглушении, 13 пациентов могли самостоятельное передвигаться и обследовались в условиях лаборатории, 4 были обследованы в палате хирургического отделения. Все 17 пациентов имели очаговый неврологический дефицит различной степени выраженности, обусловленный опухолью задней черепной ямки (таблица №1). Опухоли и их локализации были достоверно идентифицированы по результатам МРТ, интраоперационно, и по результатам биопсии. Ни у одного из пациентов опухоли не инфильтрировали ствол головного мозга, а только компримировали его в той или иной степени.

Рисунок №1

Корреляционный анализ амплитуды пика N20 при стимуляции справа в мкВ (абсцисса) и времени, прошедшего с момента поступления в отделение реанимации и ИТ и до момента экстубации в минутах (ордината)

Рисунок №2

Корреляционный анализ амплитуды пика N20 при стимуляции слева в мкВ (абсцисса) и времени, прошедшего с момента поступления в отделение реанимации и ИТ и до момента экстубации в минутах (ордината)

В зависимости от длительности проведения ИВЛ в раннем послеоперационном периоде пациенты разделились на 2 группы. Первая группа состояла из 12 пациентов. Все они в раннем послеоперационном периоде открыли глаза, выполненили инструкции врача и были успешно экстубированы в среднем в течение 4,6 часов. Ни у одного из пациентов в этой группе не было необходимости в реинтубации и не было выявлено нарушений функции черепных нервов бульбарной группы. В целом нарастания очаговой неврологической симптоматики по сравнению с таковой в дооперационном периоде не отмечалось. Вторая группа состояла из 6 пациентов, 5 из которых в раннем послеоперационном периоде открыли глаза и выполнили инструкции врача и были экстубированы в среднем через 15 часов после операции, а у одного выполнена трахеостомия в связи с многократными неудачными клиническими тестами готовности к экстубации. При наличии отчетливых признаков пробуждения и выполнения инструкций эти пациенты не смогли пройти клинический тест готовности к экстубации. В связи с этим у них проводилась медикаментозная седация и ИВЛ с периодическим пробуждением и повторением клинического теста готовности к экстубации. Один пациент пробудился, но был грубо дезориентирован, инструкции не выполнил и был экстубирован через 19 часов после поступления в палату пробуждения без нарушений глотания, но с выраженными мнестическими нарушениями, которые регрессировали в течение следующих суток. Ни в одной из групп у пациентов по данным исследования ССВП не обнаружено увеличения абсолютной латентности пиков N13 и N20, выходящих за пределы референсных значений, ни у одного пациента данный параметр не имел статистически значимых различий при стимуляции справа и слева.

Рисунок №3

Сравнение индекса асимметрии ответов центрального времени проведения у пациентов 1-ой и 2-ой группы

Индекс асимметрии ответов центрального времени проведения после операции был статистически значимо меньше в первой группе, чем во второй (0,0376 и 0,0747, p=0,04). Таким образом, у пациентов второй группы значения ЦВП (МПИ N13-N20) были симметричны при стимуляции справа и слева, а у пациентов первой группы наблюдалась асимметрия центрального времени проведения за счет одностороннего увеличения латентности компонента N20. Получена статистически значимая обратная корреляция между величиной амплитуды кортикального ответа N20 на стороне опухоли и временем, прошедшим с момента поступления пациента в палату пробуждения до момента экстубации (r=0,5; r=0.6; p<0,05). У пациента, которому впоследствии была выполнена трахеостомия, пик N20 отсутсвовал на стороне опухоли.

Дискуссия

Соматосенсорные вызванные потенциалы (ССВП) - электрические потенциалы, генерируемые различными частями восходящего пути глубокой проприоцептивной чувствительности в ответ на стимуляцию периферических нервов [15]. Известно, что изменение латентности компонентов ССВП свидетельствует о нарушении функции шванновских клеток [17] и косвенно говорит об ишемии участков ствола и полушарий головного мозга, в которых проходят пути глубокой проприоцептивной чувствительности (ГПЧ), либо о демиелинизирующем поражении оболочек нервных отростков, что встречается при рассеянном склерозе. В нашем исследовании не было пациентов, у которых в дооперационном периоде выявлялось увеличение латентности кортикальных ответов. Это косвенно подтверждает экзофитный характер роста опухолей у исследуемых пациентов и отсутствие ишемического поражения участков ствола головного мозга, в которых проходят пути глубокой проприоцептивной чувствительности в дооперационном периоде. В работе, где исследовались пациенты с опухолями, инфильтрирующими ствол головного мозга, показано, что изменение кортикальных ответов ССВП происходит в первую очередь за счет увеличения абсолютной латентности N20 [18].

Снижение амплитуды ответов ССВП может соответствовать уменьшению пула аксонов в пучке проводящих путей ГПЧ [17]. Таким образом, снижение амплитуды кортикальных ответов ССВП без изменения их латентности может быть обусловлено прямым повреждением волокон во время вмешательства. С другой стороны, учитывая локализацию этих путей и недопустимость столь агрессивного воздействия на ствол головного мозга во время хирургического вмешательства, предположение о прямом повреждении путей ГПЧ абсурдно. Что же тогда вызывает снижение амплитуды кортикальных ответов без увеличения абсолютной латентности? Можно предположить, что изменение амплитуды компонета N20 связано с отеком структур мозга, где проходят пути ГПЧ. Этот отек может быть вызван как воздействием опухоли, так и результатом хирургических манипуляций во время операции. По результатам нашей работы выявлено увеличение межпикового интервала N13-N20 (центральное время проведения) в группе пациентов, которым потребовалось продление ИВЛ, по сравнению с теми, которые были экстубированы после восстановления сознания. По данным изученной литературы увеличение МПИ без уменьшения амплитуды пиков – частое и, обычно, обратимое явление, которое наблюдается при дисфункции ствола на фоне применения препаратов, метаболических расстройств и гипотермии [16]. В нашем случае увеличение центрального времени проведения происходило на фоне уменьшения амплитуды компонетна N20. Статистически подтвердить эту связь невозможно по причине малой выборки, но, предположительно, это могло быть связано с ишемическим процессом в стволе головного мозга.

Глубокая пропироцептивная чувствительность (ГПЧ) является осознанной и включает в себя мышечно-суставное чувство, чувство давления, вибрации и кинестезии. Пути ГПЧ от верхних и нижних конечностей, прерываясь в клиновидном и тонком ядрах, следуют к передне-центральным отделам и занимают самую глубокую часть передней борозды, образовавшейся между оливами сверху и валиками пирамидных путей снизу. Перекрест lemniscus medialis происходит в верхних 2/3 продолговатого мозга и продолжается в нижних отделах моста. Далее пути ГПЧ проходят в передней части покрышки моста. В покрышке среднего мозга они сгруппированы в её переднем отделе, по поперечнику локализуюсь в центрально латеральных отделах от красных ядер, вдоль черной субстанции [20].

Афферентные волокна глубокой проприоцептивной чувствительности от головы, шеи, языка и глотки описаны в составе 9 и 10 пары ЧН. Аксоны 2 нейронов путей ГПЧ следуют в перекрест медиальной петли и направляются в таламус вместе с аксонами вторых нейронов от ядер Бурдоха и Голля.

Можно предположить, что при нарушении проведения импульсов от верхних конечностей по путям ГПЧ (в результате отека ствола головного мозга на уровне медиальной петли) также происходит нарушение проведения по путям ГПЧ от слизистой языка и глотки, поскольку они проходят в едином пучке нервных волокон. На основании этого можно допустить, что изменение кортикальных ответов N20 ССВП при стимуляции верхних конечностей будет косвенно свидетельствовать о нарушении проведения ГПЧ от мышц языка и глотки, при условии, что повреждение ствола головного мозга произошло выше, чем афферентные проводники ГПЧ IX и X пар ЧН вошли в состав медиальной петли, или нарушение проведения по проводникам ГПЧ произошло выше вступления их в таламус.

Характер изменений ССВП в раннем периоде после операции на структурах ЗЧЯ позволяет предположить связь между снижением амплитуды компонента N20 и асимметричностью центрального времени проведения с нарушением глубокой чувствительности корня языка и задней стенки глотки. Следует заметить, однако, что отсутствие снижения амплитуды кортикальных ответов N20 ССВП не могут быть надежным предиктором нарушения глотания у пациента в раннем послеоперационном периоде после операций на структурах ЗЧЯ. Нарушение глубокой чувствительности корня языка и задней стенки глотки, и, как следствие, нарушения акта глотания, является одной из причин неудачной экстубации пациентов после операций на структурах ЗЧЯ.

Таким образом, врач, принимающий решение об экстубации пациента после операции на ЗЧЯ, должен учитывать результаты клинических и инструментальных тестов, оценивающих риск нарушений глотания. Одним из таких исследований может служить уменьшение амплитуды кортикальных ответов N20 ССВП и ассиметричность центрального времени проведения при условии отсутствия повреждения таламуса и коры головного мозга.

Учитывая большое количество допущений, на малой выборке пациентов, полученные данные являются предметом дискуссии и позволяют продолжить исследование в данном направлении.

Выводы

1.Асимметричность центрального времени проведения при стимуляции справа и слева и снижение амплитуды пика N20 на стороне опухоли могут служить дополнительным предиктором нарушения глотания у пациента при условии отсутствия повреждения таламуса и коры головного мозга.

2.Стойкое отсутствие кортикальных ответов с одной стороны после операции на ЗЧЯ может служить дополнительным показанием в пользу необходимости протекции дыхательных путей, продленной ИВЛ и в дальнейшем принятии решения о необходимости ранней трахеостомии при условии отсутствия повреждения таламуса и коры головного мозга.

Список литературы

1.Дж. Эдвард Морган мл., Мэгид С. Михаил. Клиническая анестезиология. Книга первая. Издательство: Бином, 2008 г.

2.Практическое руководство по анестезиологии /Под ред. В.В. Лихванцева. — М.: Медицинское информационное агентство, 1998 г.

3.Эйткенхед А.Р., Смит Г., "Руководство по анестезиологиии" в 2-х томах  (под. ред.) перевод Дудникова С.Ф., М. Медицина 1999 г.

4.Пол Д. Барах, Брюс Ф. Куллен, Роберт К. Стэлтинг; Клиническая анестезиология. М. 2007 г.

5.Горячев А.С., Савин И.А., Пуцилло М.В., Брагина Н.Н., Соколова Е.Ю., Щепетков А.Н., Фокин М.С., Кроптова М.В. Шкала оценки и терапевтическая стратегия при нарушении глотания у больных с повреждением ствола головного мозга. Вопросы нейрохирургии №4 2006 стр. 24-28.

6.Nuwer MR, Daube J, Fischer C, Schramm J, Yingling CD. Neuromonitoring during surgery. Report of an IFCN Committee. Electroencephalogr Clin Neurophysiol. 1993 Nov;87(5):263-76.

7.Schekutiev G.A., Lazarev V.A., Tchurilov M.V. Somatosensory evoked potential in intracranial aneurysm surgery with endovascular occlusion.// Selected abstracts of 4th Internat. Symposium "CNS Monitoring", Gmunden, Austria, 1996./ J.Neurosurg. Anesth., 1997, V.9, N.1, p.94.

8.Щекутьев Г.А. Нейромониторинг: современное состояние и перспективы развития.// Ж.Высшей Нервной Деятельности, 1998, Т.48, в.4, с.747-756.

9.Manninen PH, Patterson S, Lam AM, Gelb AW, Nantau WE. Evoked potential monitoring during posterior fossa aneurysm surgery: a comparison of two modalities. Can J Anaesth. 1994 Feb;41(2):92-7.

10.Georg Neuloh, M.D., And Johannes Schramm, M.D. Klinik und Poliklinik fur Neurochirurgie, Rheinische Friedrich-Wilhelms-Universitat, Bonn,; Monitoring of motor evoked potentials compared with somatosensory evoked potentials and microvascular Doppler ultrasonography in cerebral aneurysm surgery. J Neurosurg 100:389–399, 2004

11.Kang De-Zhi, Wu Zan-Yi, Lan Qing, Yu Liang-Hong, Lin Zhang-Ya, Wang Chen-Yang and Lin Yuan-xiang Combined monitoring of evoked potentials during microsurgery for lesions adjacent to the brainstem and intracranial aneurysms Chinese Medical Journal 2007; 120(18):1567-1573

12.Robert H. Wilkins, M.D., Rodney A. Radtke, M.D., and C. William Erwin, M.D. Value of lntraoperative Brainstemn Auditory Evoked Potential Monitoring in Reducing the Auditory Morbidity Associated with Microvascular Decompression of Cranial Nerves. Skull Base Surgery, Volume 1, Number 2, April 1991

13.William A. Friedman, M.D., Barry J. Kaplan, M.D., Dietrich Gravenstein, B.S., and Albert l. Rhoton, jr., M.D. Intraoperative brain-stem auditory evoked potentials during posterior fossa microvascular decompression. J Neurosurg 62:552-557, 1985

14.Samuel H. Selesnick, M.D., and Daniel F Goldsmith. Issues in the Optimal Selection of a Cranial Nerve Monitoring System Skull Base Surgeryn volume 3, number 4 october 1993.

15.Гнездицкий В.В. Вызванные потенциалы мозга в клинической практике. МЕДпресс-информ. 2003

16.J.-M. Guérit, A. Amantini, P. Amodio, K. V. Andersen, S. Butler, A. de Weerd, E. Facco, C. Fischer, P. Hantson, V. Jäntti, M.-D. Lamblin, G. Litscherhttp Consensus on the use of neurophysiological tests in the intensive care unit (ICU): Electroencephalogram (EEG), evoked potentials (EP), and electroneuromyography (ENMG). Neurophysiologie Clinique-clinical Neurophysiology - NEUROPHYSIOL CLIN , vol. 39, no. 2, pp. 71-83, 2009

17.Robert B. Daroff, MD, Gerald M Fenichel, MD, Joseph Jankovic, MD, and John C. Mazziotta, MD, PhD Bradley's Neurology in Clinical Practice, 2-Volume Set, 6th Edition. Elsevier 2012.

18.Masafumi Fukuda, Shigeki Kameyama, Yoshiho Honda, Hidetoshi Yamazaki, Tadashi Kawaguchi, Akira Tamura,Kenji Suzuki, and Ryuichi Tanaka. Short-latency Somatosensory Evoked Potentials in Patients with Brain Stem Tumor: Study of N20 and N18 potentials. Neuro Med Chir (Tokyo) 37, 525-532, 1997.

19.Thorn Yamada, MD, Tetsuro Ishida, MD, Yutaka Kudo, MD, Robert L. Rodnitzky, MD and Jun Kimura, MD Clinical correlates of abnormal P14 in median SEPs Neurology June 1986 36:765

20.M. Baehr, M. Frotscher. Duus' Topical Diagnosis in Neurology: Anatomy, Physiology, Signs, Symptoms 4ts Completely revised edition. Thieme Stuttgart – New York 2005.

21 июня 2015

Рекомендации по управлению температурой тела в нейрореанимации PDF

Скачать статью.pdf

Попугаев К.А., Ошоров А.В., Троицкий А.П., Савостьянов М.Ю., Лубнин А.Ю.

Вестник интенсивной терапии. 2015. № 2. С. 17-22.
26 апреля 2015

Классификация черепно-мозговой травмы Литобзор в 3-х частях

КЛАССИФИКАЦИЯ ЧЕРЕПНО-МОЗГОВОЙ ТРАВМЫ • ЧАСТЬ I

Скачать часть 1.pdf

КЛАССИФИКАЦИЯ ЧЕРЕПНО-МОЗГОВОЙ ТРАВМЫ • ЧАСТЬ II. СОВРЕМЕННЫЕ ПРИНЦИПЫ КЛАССИФИКАЦИИ ЧМТ

Скачать часть 2.pdf

КЛАССИФИКАЦИЯ ЧЕРЕПНО-МОЗГОВОЙ ТРАВМЫ • ЧАСТЬ III. СЛАГАЕМЫЕ ДИАГНОЗА ЧМТ И ПРИНЦИПЫ ЕГО ПОСТРОЕНИЯ

Скачать часть 3.pdf

http://www.cудебная-медицна.РФ (электронный журнал)
26 января 2015

Postsurgical meningitis complicated by severe refractory intracranial hypertension with limited treatment options: the role of mild therapeutic hypothermia. PDF

Postsurgical Meningitis.pdf

Менингит, осложненный выраженной, рефрактерной внутричерепной гипертензией. Роль умеренной гипотермии в лечении этого варианта внутричерепной гипертензии. Статья (английский)

Popugaev KA, Savin IA, Oshorov AV, Kurdumova NV, Ershova ON, Lubnin AU, Kadashev BA, Kalinin PL, Kutin MA, Killeen T, Cesnulis E, Melieste R.

J Neurol Surg Rep. 2014 Dec;75(2):e224-9. doi: 10.1055/s-0034-1387188. Epub 2014 Aug 21
26 декабря 2014

Использование внутрисосудистой гипотермии для коррекции внутричерепной гипертензии у пострадавших с тяжелой черепно-мозговой травмой PDF

Вопросы нейрохирургии им. Н.Н. Бурденко. 2014. Т. 78. № 5. С. 41-48.
25 ноября 2014

Клиническое и прогностическое значение генетических маркеров при черепно-мозговой травме (часть III) PDF

Вопросы нейрохирургии им. Н.Н. Бурденко. 2014. Т. 78. № 3. С. 53-61.
28 августа 2014

Факторы риска развития послеоперационного менингита у больных с опухолями хазмально-селлярной области PDF

Анестезиология и реаниматология. 2014. № 2. С. 10-14.
25 марта 2014

Бессудорожный эпилептический статус как причина бессознательного состояния PDF

Вестник Интенсивной Терапии 2014 №2 стр 18-25
25 марта 2014